Visual insight into how low pH alone can induce actin-severing ability in gelsolin under calcium-free conditions

J Biol Chem. 2011 Jun 10;286(23):20387-97. doi: 10.1074/jbc.M111.236943. Epub 2011 Apr 15.

Abstract

Gelsolin is a key actin cytoskeleton-modulating protein primarily regulated by calcium and phosphoinositides. In addition, low pH has also been suggested to activate gelsolin in the absence of Ca(2+) ions, although no structural insight on this pathway is available except for a reported decrement in its diffusion coefficient at low pH. We also observed ~1.6-fold decrease in the molecular mobility of recombinant gelsolin when buffer pH was lowered from 9 to 5. Analysis of the small angle x-ray scattering data collected over the same pH range indicated that the radius of gyration and maximum linear dimension of gelsolin molecules increased from 30.3 to 34.1 Å and from 100 to 125 Å, respectively. Models generated for each dataset indicated that similar to the Ca(2+)-induced process, low pH also promotes unwinding of this six-domain protein but only partially. It appeared that pH is able to induce extension of the G1 domain from the rest of the five domains, whereas the Ca(2+)-sensitive latch between G2 and G6 domains remains closed. Interestingly, increasing the free Ca(2+) level to merely ~40 nM, the partially open pH 5 shape "sprung open" to a shape seen earlier for this protein at pH 8 and 1 mm free Ca(2+). Also, pH alone could induce a shape where the g3-g4 linker of gelsolin was open when we truncated the C-tail latch from this protein. Our results provide insight into how under physiological conditions, a drop in pH can fully activate the F-actin-severing shape of gelsolin with micromolar levels of Ca(2+) available.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Actins / chemistry*
  • Actins / genetics
  • Actins / metabolism
  • Calcium*
  • Crystallography, X-Ray
  • Gelsolin / chemistry*
  • Gelsolin / genetics
  • Gelsolin / metabolism
  • Humans
  • Hydrogen-Ion Concentration
  • Protein Structure, Tertiary
  • Structure-Activity Relationship

Substances

  • Actins
  • Gelsolin
  • Calcium