Eukaryote-to-eukaryote gene transfer gives rise to genome mosaicism in euglenids
- PMID: 21501489
- PMCID: PMC3101172
- DOI: 10.1186/1471-2148-11-105
Eukaryote-to-eukaryote gene transfer gives rise to genome mosaicism in euglenids
Abstract
Background: Euglenophytes are a group of photosynthetic flagellates possessing a plastid derived from a green algal endosymbiont, which was incorporated into an ancestral host cell via secondary endosymbiosis. However, the impact of endosymbiosis on the euglenophyte nuclear genome is not fully understood due to its complex nature as a 'hybrid' of a non-photosynthetic host cell and a secondary endosymbiont.
Results: We analyzed an EST dataset of the model euglenophyte Euglena gracilis using a gene mining program designed to detect laterally transferred genes. We found E. gracilis genes showing affinity not only with green algae, from which the secondary plastid in euglenophytes evolved, but also red algae and/or secondary algae containing red algal-derived plastids. Phylogenetic analyses of these 'red lineage' genes suggest that E. gracilis acquired at least 14 genes via eukaryote-to-eukaryote lateral gene transfer from algal sources other than the green algal endosymbiont that gave rise to its current plastid. We constructed an EST library of the aplastidic euglenid Peranema trichophorum, which is a eukaryovorous relative of euglenophytes, and also identified 'red lineage' genes in its genome.
Conclusions: Our data show genome mosaicism in E. gracilis and P. trichophorum. One possible explanation for the presence of these genes in these organisms is that some or all of them were independently acquired by lateral gene transfer and contributed to the successful integration and functioning of the green algal endosymbiont as a secondary plastid. Alternative hypotheses include the presence of a phagocytosed alga as the single source of those genes, or a cryptic tertiary endosymbiont harboring secondary plastid of red algal origin, which the eukaryovorous ancestor of euglenophytes had acquired prior to the secondary endosymbiosis of a green alga.
Figures
Similar articles
-
Genomic footprints of a cryptic plastid endosymbiosis in diatoms.Science. 2009 Jun 26;324(5935):1724-6. doi: 10.1126/science.1172983. Science. 2009. PMID: 19556510
-
Secondary Plastids of Euglenids and Chlorarachniophytes Function with a Mix of Genes of Red and Green Algal Ancestry.Mol Biol Evol. 2018 Sep 1;35(9):2198-2204. doi: 10.1093/molbev/msy121. Mol Biol Evol. 2018. PMID: 29924337 Free PMC article.
-
Re-evaluating the green versus red signal in eukaryotes with secondary plastid of red algal origin.Genome Biol Evol. 2012;4(6):626-35. doi: 10.1093/gbe/evs049. Epub 2012 May 16. Genome Biol Evol. 2012. PMID: 22593553 Free PMC article.
-
The endosymbiotic origin, diversification and fate of plastids.Philos Trans R Soc Lond B Biol Sci. 2010 Mar 12;365(1541):729-48. doi: 10.1098/rstb.2009.0103. Philos Trans R Soc Lond B Biol Sci. 2010. PMID: 20124341 Free PMC article. Review.
-
A new scenario of plastid evolution: plastid primary endosymbiosis before the divergence of the "Plantae," emended.J Plant Res. 2005 Aug;118(4):247-55. doi: 10.1007/s10265-005-0219-1. Epub 2005 Jul 20. J Plant Res. 2005. PMID: 16032387 Review.
Cited by
-
Euglenozoan kleptoplasty illuminates the early evolution of photoendosymbiosis.Proc Natl Acad Sci U S A. 2023 Mar 21;120(12):e2220100120. doi: 10.1073/pnas.2220100120. Epub 2023 Mar 16. Proc Natl Acad Sci U S A. 2023. PMID: 36927158 Free PMC article.
-
On the need for mechanistic models in computational genomics and metagenomics.Genome Biol Evol. 2013;5(10):2008-18. doi: 10.1093/gbe/evt151. Genome Biol Evol. 2013. PMID: 24115604 Free PMC article.
-
Green fluorescence from cnidarian hosts attracts symbiotic algae.Proc Natl Acad Sci U S A. 2019 Feb 5;116(6):2118-2123. doi: 10.1073/pnas.1812257116. Epub 2019 Jan 22. Proc Natl Acad Sci U S A. 2019. PMID: 30670646 Free PMC article.
-
Euglena Central Metabolic Pathways and Their Subcellular Locations.Metabolites. 2019 Jun 14;9(6):115. doi: 10.3390/metabo9060115. Metabolites. 2019. PMID: 31207935 Free PMC article.
-
Cyclic nucleotide-gated ion channel gene family in rice, identification, characterization and experimental analysis of expression response to plant hormones, biotic and abiotic stresses.BMC Genomics. 2014 Oct 4;15(1):853. doi: 10.1186/1471-2164-15-853. BMC Genomics. 2014. PMID: 25280591 Free PMC article.
References
-
- Adl SM, Simpson AGB, Farmer MA, Andersen RA, Anderson OR, Barta JR, Bowser SS, Brugerolle G, Fensome RA, Fredericq S. et al.The new higher level classification of eukaryotes with emphasis on the taxonomy of protists. J Eukaryot Microbiol. 2005;52(5):399–451. doi: 10.1111/j.1550-7408.2005.00053.x. - DOI - PubMed
-
- Nozaki H, Maruyama S, Matsuzaki M, Nakada T, Kato S, Misawa K. Phylogenetic positions of Glaucophyta, green plants (Archaeplastida) and Haptophyta (Chromalveolata) as deduced from slowly evolving nuclear genes. Mol Phylogenet Evol. 2009;53(3):872–880. doi: 10.1016/j.ympev.2009.08.015. - DOI - PubMed
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Research Materials
