Seven things we think we know about auxin transport

Mol Plant. 2011 May;4(3):487-504. doi: 10.1093/mp/ssr034. Epub 2011 Apr 19.


Polar transport of the phytohormone auxin and the establishment of localized auxin maxima regulate embryonic development, stem cell maintenance, root and shoot architecture, and tropic growth responses. The past decade has been marked by dramatic progress in efforts to elucidate the complex mechanisms by which auxin transport regulates plant growth. As the understanding of auxin transport regulation has been increasingly elaborated, it has become clear that this process is involved in almost all plant growth and environmental responses in some way. However, we still lack information about some basic aspects of this fundamental regulatory mechanism. In this review, we present what we know (or what we think we know) and what we do not know about seven auxin-regulated processes. We discuss the role of auxin transport in gravitropism in primary and lateral roots, phototropism, shoot branching, leaf expansion, and venation. We also discuss the auxin reflux/fountain model at the root tip, flavonoid modulation of auxin transport processes, and outstanding aspects of post-translational regulation of auxin transporters. This discussion is not meant to be exhaustive, but highlights areas in which generally held assumptions require more substantive validation.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Review

MeSH terms

  • Biological Transport
  • Gravitropism / physiology
  • Indoleacetic Acids / metabolism*
  • Models, Biological
  • Phototropism / physiology
  • Protein Processing, Post-Translational


  • Indoleacetic Acids