Imaging of atherosclerosis: magnetic resonance imaging

Eur Heart J. 2011 Jul;32(14):1709-19b. doi: 10.1093/eurheartj/ehr068. Epub 2011 Apr 19.


Atherosclerosis and its thrombotic complications are the major cause of morbidity and mortality in the industrialized countries. Despite advances in our understanding of the pathophysiology, pathogenesis, and new treatment modalities, the absence of an adequate non-invasive imaging tool for early detection limits both the prevention and treatment of patients with various degrees and anatomical localizations of atherothrombotic disease. An ideal clinical imaging modality for atherosclerotic vascular disease should be safe, inexpensive, non-invasive or minimally invasive, accurate, and reproducible, and the results should correlate with the extent of atherosclerotic disease and have high predictive values for future clinical events. High-resolution magnetic resonance imaging (MRI) has emerged as the most promising technique for studying atherothrombotic disease in humans in vivo. Most importantly, MRI allows for the characterization of plaque composition, i.e. the discrimination of lipid core, fibrosis, calcification, and intraplaque haemorrhage deposits. Magnetic resonance imaging also allows for the detection of arterial thrombi and in defining thrombus age. Magnetic resonance imaging has been used to monitor plaque progression and regression in several animal models of atherosclerosis and in humans. Emerging MRI techniques capable of imaging biological processes, including inflammation, neovascularization, and mechanical forces, may aid in advancing our understanding of the atherothrombotic disease. Advances in diagnosis do prosper provided they march hand-in-hand with advances in treatment. We stand at the threshold of accurate non-invasive assessment of atherosclerosis. Thus, MRI opens new strategies ranging from screening of high-risk patients for early detection and treatment as well as monitoring of the target lesions for pharmacological intervention. Identification of subclinical atherosclerosis and early treatment initiation has the potential to surpass conventional risk factor assessment and management in terms of overall impact on cardiovascular morbidity and mortality. Such strategy is currently under clinical investigation.

Publication types

  • Review

MeSH terms

  • Aged, 80 and over
  • Animals
  • Aortic Diseases / pathology
  • Atherosclerosis / pathology*
  • Atherosclerosis / physiopathology
  • Blood Flow Velocity
  • Carotid Artery Diseases / pathology
  • Coronary Artery Disease / pathology
  • Disease Models, Animal
  • Feasibility Studies
  • Forecasting
  • Humans
  • Hydroxymethylglutaryl-CoA Reductase Inhibitors / therapeutic use
  • Magnetic Resonance Angiography / methods*
  • Plaque, Atherosclerotic / pathology*
  • Rabbits
  • Swine
  • Thromboembolism / etiology
  • Thromboembolism / pathology
  • Validation Studies as Topic


  • Hydroxymethylglutaryl-CoA Reductase Inhibitors