Warming will affect phytoplankton differently: evidence through a mechanistic approach
- PMID: 21508031
- PMCID: PMC3189365
- DOI: 10.1098/rspb.2011.0160
Warming will affect phytoplankton differently: evidence through a mechanistic approach
Abstract
Although the consequences of global warming in aquatic ecosystems are only beginning to be revealed, a key to forecasting the impact on aquatic communities is an understanding of individual species' vulnerability to increased temperature. Despite their microscopic size, phytoplankton support about half of the global primary production, drive essential biogeochemical cycles and represent the basis of the aquatic food web. At present, it is known that phytoplankton are important targets and, consequently, harbingers of climate change in aquatic systems. Therefore, investigating the capacity of phytoplankton to adapt to the predicted warming has become a relevant issue. However, considering the polyphyletic complexity of the phytoplankton community, different responses to increased temperature are expected. We experimentally tested the effects of warming on 12 species of phytoplankton isolated from a variety of environments by using a mechanistic approach able to assess evolutionary adaptation (the so-called ratchet technique). We found different degrees of tolerance to temperature rises and an interspecific capacity for genetic adaptation. The thermal resistance level reached by each species is discussed in relation to their respective original habitats. Our study additionally provides evidence on the most resistant phytoplankton groups in a future warming scenario.
Similar articles
-
Phytoplankton adapt to changing ocean environments.Proc Natl Acad Sci U S A. 2015 May 5;112(18):5762-6. doi: 10.1073/pnas.1414752112. Epub 2015 Apr 20. Proc Natl Acad Sci U S A. 2015. PMID: 25902497 Free PMC article.
-
A global pattern of thermal adaptation in marine phytoplankton.Science. 2012 Nov 23;338(6110):1085-8. doi: 10.1126/science.1224836. Epub 2012 Oct 25. Science. 2012. PMID: 23112294
-
Thermal niche evolution of functional traits in a tropical marine phototroph.J Phycol. 2018 Dec;54(6):799-810. doi: 10.1111/jpy.12759. Epub 2018 Aug 13. J Phycol. 2018. PMID: 29901841
-
Title: Freshwater phytoplankton responses to global warming.J Plant Physiol. 2016 Sep 20;203:127-134. doi: 10.1016/j.jplph.2016.05.018. Epub 2016 Jun 16. J Plant Physiol. 2016. PMID: 27344409 Review.
-
Effects of climate warming, North Atlantic Oscillation, and El Niño-Southern Oscillation on thermal conditions and plankton dynamics in northern hemispheric lakes.ScientificWorldJournal. 2002 Mar 8;2:586-606. doi: 10.1100/tsw.2002.141. ScientificWorldJournal. 2002. PMID: 12805986 Free PMC article. Review.
Cited by
-
Warming modulates the photosynthetic performance of Thalassiosira pseudonana in response to UV radiation.Front Microbiol. 2023 Oct 31;14:1284792. doi: 10.3389/fmicb.2023.1284792. eCollection 2023. Front Microbiol. 2023. PMID: 38029218 Free PMC article.
-
Chemical mutagenesis and thermal selection of coral photosymbionts induce adaptation to heat stress with trait trade-offs.Evol Appl. 2023 Aug 19;16(9):1549-1567. doi: 10.1111/eva.13586. eCollection 2023 Sep. Evol Appl. 2023. PMID: 37752965 Free PMC article.
-
Winners and Losers of Atlantification: The Degree of Ocean Warming Affects the Structure of Arctic Microbial Communities.Genes (Basel). 2023 Mar 1;14(3):623. doi: 10.3390/genes14030623. Genes (Basel). 2023. PMID: 36980894 Free PMC article.
-
Bacterial transcriptional response to labile exometabolites from photosynthetic picoeukaryote Micromonas commoda.ISME Commun. 2023 Jan 23;3(1):5. doi: 10.1038/s43705-023-00212-0. ISME Commun. 2023. PMID: 36690682 Free PMC article.
-
Thermal-tolerant potential of ordinary Chlorella pyrenoidosa and the promotion of cell harvesting by heterotrophic cultivation at high temperature.Front Bioeng Biotechnol. 2022 Dec 1;10:1072942. doi: 10.3389/fbioe.2022.1072942. eCollection 2022. Front Bioeng Biotechnol. 2022. PMID: 36532587 Free PMC article.
References
-
- Barnett T. P., Pierce D. W., AchutaRao K. M., Gleckler P. J., Santer B. D., Gregory J. M., Washington W. M. 2005. Penetration of human-induced warming into the world's oceans. Science 309, 284–28710.1126/science.1112418 (doi:10.1126/science.1112418) - DOI - DOI - PubMed
-
- Doney S. C., Fabry V. F., Feely R. A., Kleyplas J. A. 2009. Ocean acidification: the other CO2 problem. Ann. Rev. Mar. Sci. 1, 169–19210.1146/annurev.marine.010908.163834 (doi:10.1146/annurev.marine.010908.163834) - DOI - DOI - PubMed
-
- IPCC. 2007. Summary for policymakers. In Climate change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (eds Solomon S., Qin D., Manning M., Chen Z., Marquis M., Averyt K. B., Tignor M., Miller H. L.), pp. 7–22 Cambridge, UK: Cambridge University Press
-
- Trenberth K. E., Jones P. D., Ambenje P., Bojariu R., Easterling D., et al. 2007. Observations: surface and atmospheric climate change. In Climate change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (eds Solomon S., Qin D., Manning M., Chen Z., Marquis M., Averyt K. B., Tignor M., Miller H. L.), pp. 235–336 Cambridge, UK: Cambridge University Press
-
- Hansen J., Sato M., Ruedy R., Lo K., Lea D. V., Medina-Elizade M. 2006. Global temperature change. Proc. Natl Acad. Sci. USA 103, 14 288–14 29310.1073/pnas.0606291103 (doi:10.1073/pnas.0606291103) - DOI - DOI - PMC - PubMed
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Medical
