Pex11pβ-mediated maturation of peroxisomes

Commun Integr Biol. 2011 Jan;4(1):51-4. doi: 10.4161/cib.4.1.13647.


Peroxisomes are highly dynamic, multifunctional organelles that display remarkable changes in morphology, number and enzyme content. Peroxisomes multiply by growth and division of pre-existing organelles, but they can also form de novo from the ER. Growth and division of peroxisomes in mammalian cells involves elongation, membrane constriction and final fission and requires the peroxisome biogenesis Pex11 proteins as well as the recruitment of Dynamin-like protein DLP1/Drp1. We recently exploited the division-inhibiting properties of a unique Pex11pβ-YFP fusion protein to further dissect the process of peroxisomal growth and division. By applying life cell imaging and the HaloTag technology, our study revealed that Pex11pβ-mediated growth (elongation) and division of peroxisomes follows a multistep maturation pathway, which is initiated by the formation of an early peroxisomal membrane compartment from a pre-existing peroxisome and its stepwise conversion into a mature, metabolically active peroxisome compartment. Our observations support the view that peroxisomes formed by growth and division of pre-existing ones contain new membrane and matrix components. Peroxisome division is an asymmetric process, which is more complex than simple (symmetric) division of a preexisting organelle and equal distribution of the protein content. Our findings are in favor of Pex11pβ acting as a peroxisomal membrane shaping protein.

Keywords: Pex11p; fission; membrane deformation; organelle division; peroxisome proliferation; peroxisomes.