Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2011 May;16(5):565-75.
doi: 10.1111/j.1365-2443.2011.01508.x.

Ultradian rhythm in the intestine of Caenorhabditis elegans is controlled by the C-terminal region of the FLR-1 ion channel and the hydrophobic domain of the FLR-4 protein kinase

Affiliations
Free article

Ultradian rhythm in the intestine of Caenorhabditis elegans is controlled by the C-terminal region of the FLR-1 ion channel and the hydrophobic domain of the FLR-4 protein kinase

Yuri Kobayashi et al. Genes Cells. 2011 May.
Free article

Abstract

Defecation behavior in Caenorhabditis elegans is driven by an endogenous ultradian clock in the intestine. Its periods are positively regulated by FLR-1, an ion channel of the epithelial sodium channel/degenerin superfamily, and FLR-4, a protein kinase with a hydrophobic domain at the carboxyl terminus. FLR-1 has many putative phosphorylation sites in the C-terminal intracellular region. This structure implies that the periods may be regulated by the phosphorylation of FLR-1 by FLR-4, but it remains to be clarified. Here, we show that a truncated FLR-1 lacking the C-terminal intracellular region resulted in longer periods, suggesting that this region is involved in the negative regulation of defecation cycle periods. Contrary to our expectation, FLR-4 was still necessary for the function of the truncated FLR-1. Furthermore, FLR-4 containing a kinase-dead mutation or lacking the whole kinase domain was sufficient for normal defecation cycle periods. FLR-4 was necessary for the stable expression of FLR-1::GFP, and its hydrophobic domain was sufficient also for this function. FLR-1 and FLR-4 are often colocalized in the plasma membrane. These data showed an unexpected role of FLR-4: its hydrophobic domain stabilizes the FLR-1 ion channel, a key regulator of defecation cycle periods in the intestine.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources