Evidence for a continuum of genetic, phenotypic, and biochemical abnormalities in children with growth hormone insensitivity

Endocr Rev. 2011 Aug;32(4):472-97. doi: 10.1210/er.2010-0023. Epub 2011 Apr 27.


GH insensitivity (GHI) presents in childhood as growth failure and in its severe form is associated with dysmorphic and metabolic abnormalities. GHI may be caused by genetic defects in the GH-IGF-I axis or by acquired states such as chronic illness. This article discusses the former category. The field of GHI due to mutations affecting GH action has evolved considerably since the original description of the extreme phenotype related to homozygous GH receptor (GHR) mutations over 40 yr ago. A continuum of genetic, phenotypic, and biochemical abnormalities can be defined associated with clinically relevant defects in linear growth. The role and mechanisms of the GH-IGF-I axis in normal human growth is discussed, followed by descriptions of mutations in GHR, STAT5B, PTPN11, IGF1, IGFALS, IGF1R, and GH1 defects causing bioinactive GH or anti-GH antibodies. These defects are associated with a range of genetic, clinical, and hormonal characteristics. Genetic abnormalities causing growth failure that is less severe than the extreme phenotype are emphasized, together with an analysis of height and serum IGF-I across the spectrum of different types of GHR defects. An overall view of genotype and phenotype relationships is presented, together with an updated approach to the assessment of the patient with GHI, focusing on investigation of the GH-IGF-I axis and relevant molecular studies contributing to this diagnosis.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Animals
  • Child
  • Growth
  • Human Growth Hormone / physiology
  • Humans
  • Insulin-Like Growth Factor I / physiology
  • Laron Syndrome / diagnosis
  • Laron Syndrome / genetics*
  • Laron Syndrome / physiopathology
  • Mutation
  • Phenotype*


  • Human Growth Hormone
  • Insulin-Like Growth Factor I