Sonography for determining the optic nerve sheath diameter with increasing intracranial pressure in a porcine model

J Ultrasound Med. 2011 May;30(5):651-9. doi: 10.7863/jum.2011.30.5.651.

Abstract

Objectives: This study investigated whether it is feasible to use sonography to monitor changes in the optic nerve sheath diameter in a porcine model.

Methods: A fiber-optic intracranial pressure transducer was surgically placed through the frontal sinus directly into the brain parenchyma of adult Yorkshire pigs (n = 5). A second bolt was placed on the contralateral side for intraparenchymal fluid infusion. Optic nerve sheath diameter measurements were acquired by each of 2 ultrasound operators around the leading edge of the nerve, 3 to 5 mm distal from the origin of the optic nerve. To induce a change in diameter, intracranial pressure was manipulated by injecting normal saline into the intraparenchymal infusion catheter located in the symmetric contralateral position as the pressure-monitoring probe.

Results: Data from 1 pig were unusable because of a cerebrospinal fluid leak into the sinus and orbital fissure. Saline aliquots of 1 to 10 mL were able to generate intracranial pressures typically starting from 10 to 15 mm Hg and increasing to 75 to 90 mm Hg, which eventually evoked a Cushing response. Fluid injection was controlled to increase pressures by 60 mm Hg over a 15- to 20-minute period. Regression analysis of all animals showed that the optic nerve sheath diameter increased by 0.0034 mm/mm Hg of intracranial pressure; however, this slope ranged from 0.0025 to 0.0046, depending on the animal measured. There was no discernible effect of the ultrasound operator on the slope; however, measurements made by 1 operator were consistently higher than the others by about 8% of the overall diameter range.

Conclusions: These results suggest that the use of the optic nerve sheath diameter to noninvasively confirm acute changes in intracranial pressure over 1 hour is feasible in a porcine model. We recommend that this method be validated in humans using direct intracranial pressure measurement where possible to confirm it as a screening tool for acute and chronically increased diameters secondary to elevated pressure in clinical settings.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Disease Models, Animal*
  • Female
  • Humans
  • Image Enhancement / methods
  • Image Interpretation, Computer-Assisted / methods*
  • Intracranial Hypertension / diagnostic imaging*
  • Intracranial Hypertension / physiopathology
  • Intracranial Pressure*
  • Optic Nerve / diagnostic imaging*
  • Reproducibility of Results
  • Sensitivity and Specificity
  • Swine
  • Ultrasonography / methods