[Regression modeling strategies]

Rev Esp Cardiol. 2011 Jun;64(6):501-7. doi: 10.1016/j.recesp.2011.01.019. Epub 2011 Apr 29.
[Article in Spanish]


Multivariable regression models are widely used in health science research, mainly for two purposes: prediction and effect estimation. Various strategies have been recommended when building a regression model: a) use the right statistical method that matches the structure of the data; b) ensure an appropriate sample size by limiting the number of variables according to the number of events; c) prevent or correct for model overfitting; d) be aware of the problems associated with automatic variable selection procedures (such as stepwise), and e) always assess the performance of the final model in regard to calibration and discrimination measures. If resources allow, validate the prediction model on external data.

Publication types

  • English Abstract
  • Review

MeSH terms

  • Data Interpretation, Statistical
  • Effect Modifier, Epidemiologic
  • Endpoint Determination
  • Forecasting
  • Humans
  • Logistic Models
  • Models, Statistical*
  • Regression Analysis*
  • Sample Size