Aerobic oxidative transformation of primary azides to nitriles by ruthenium hydroxide catalyst

J Org Chem. 2011 Jun 3;76(11):4606-10. doi: 10.1021/jo2004956. Epub 2011 May 2.

Abstract

In the presence of an easily prepared supported ruthenium hydroxide catalyst, Ru(OH)(x)/Al(2)O(3), various kinds of structurally diverse primary azides including benzylic, allylic, and aliphatic ones could be converted into the corresponding nitriles in moderate to high yields (13 examples, 65-94% yields). The gram-scale (1 g) transformation of benzyl azide efficiently proceeded to give benzonitrile (0.7 g, 90% yield) without any decrease in the performance in comparison with the small-scale (0.5 mmol) transformation. The catalysis was truly heterogeneous, and the retrieved catalyst could be reused for the transformation of benzyl azide without an appreciable loss of its high performance. The present transformation of primary azides to nitriles likely proceeds via sequential reactions of imide formation, followed by dehydrogenation (β-elimination) to produce the corresponding nitriles. The Ru(OH)(x)/Al(2)O(3) catalyst could be further employed for synthesis of amides in water through the transformation of primary azides (benzylic and aliphatic ones) to nitriles, followed by sequent hydration of the nitriles formed. Additionally, direct one-pot synthesis from alkyl halides and TBAN(3) (TBA = tetra-n-butylammonium) could be realized with Ru(OH)(x)/Al(2)O(3), giving the corresponding nitriles in moderate to high yields (10 examples, 64-84% yields).