Introduction: The aim of this study was to investigate whether serum biomarker levels of C2C, C1,2C, CS846, and CPII can predict the long-term course of disease activity and radiographic progression early in the disease course of rheumatoid arthritis (RA).
Methods: In patients in the CAMERA trial, levels of biomarkers were evaluated at baseline and after 1 year of treatment. Relations of (changes in) biomarker values with the mean yearly radiographic progression rate and mean disease activity over a 5-year period were evaluated by using regression analysis. The added predictive value of biomarkers over established predictors for long-term outcome was analyzed by multiple linear regression analysis.
Results: Of 133 patients, serum samples were available at baseline and after 1 year of treatment. In the regression analysis C1,2C at baseline, the change in C2C, C1,2C, and the sum of the standardized changes in C2C + C1,2C scores were statistically significantly associated with the mean yearly radiographic progression rate; the change in CPII was associated with the mean disease activity over 5 years of treatment. In the multiple linear regression analysis, only the change in C1,2C was of added predictive value (P = 0.004) for radiographic progression. Explained variances of models for radiographic progression and disease activity were low (0.28 and 0.34, respectively), and the biomarkers only marginally improved the explained variance.
Conclusions: The change in C1,2C in the first year after onset of RA has a small added predictive value for disease severity over a 5-year period, but the predictive value of this biomarker combined with current predictive factors is too small to be of use for individual patients.