Developing new therapies for Alzheimer's disease (AD) is critically important to avoid the impending public health disaster imposed by this common disorder. Means must be found to prevent, delay the onset, or slow the progression of AD. These goals will be achieved by identifying disease-modifying therapies and testing them in clinical trials. Biomarkers play an increasingly important role in AD drug development. In preclinical testing, they assist in decisions to develop an agent. Biomarkers in phase I provide insights into toxic responses and drug metabolism and in Phase II proof-of-concept trials they facilitate go/no-go decisions and dose finding. Biomarkers can play a role in identifying presymptomatic patients or specific patient subgroups. They can provide evidence of target engagement before clinical changes can be expected. Brain imaging can serve as a primary outcome in Phase II trials and as a key secondary outcome in Phase III trials. Magnetic resonance imaging is currently best positioned for use in large multicenter clinical trials. Cerebrospinal fluid (CSF) measures of amyloid beta protein (Aβ), tau protein, and hyperphosphorylated tau (p-tau) protein are sensitive and specific to the diagnosis of AD and may serve as inclusion criteria and possibly as outcomes in clinical trials targeting relevant pathways. Plasma measures of Aβ are of limited diagnostic value but may provide important information as a measure of treatment response. A wide variety of measures of detectable products of cellular processes are being developed as possible biomarkers accessible in the cerebrospinal fluid and plasma or serum. Surrogate markers that can function as outcomes in pivotal trials and reliably predict clinical outcomes are needed to facilitate primary prevention trials of asymptomatic persons where clinical measures may be of limited value. Fit-for-purpose biomarkers are increasingly available to guide AD drug development decisions.
Copyright © 2011 The Alzheimer's Association. Published by Elsevier Inc. All rights reserved.