Inhibition of forskolin-induced neurite outgrowth and protein phosphorylation by a newly synthesized selective inhibitor of cyclic AMP-dependent protein kinase, N-[2-(p-bromocinnamylamino)ethyl]-5-isoquinolinesulfonamide (H-89), of PC12D pheochromocytoma cells

J Biol Chem. 1990 Mar 25;265(9):5267-72.


A newly synthesized isoquinolinesulfonamide, H-89 (N-[2-(p-bromocinnamylamino)ethyl]-5-isoquinoline-sulfonamide), was shown to have a potent and selective inhibitory action against cyclic AMP-dependent protein kinase (protein kinase A), with an inhibition constant of 0.048 +/- 0.008 microM. H-89 exhibited weak inhibitory action against other kinases and Ki values of the compound for these kinases, including cGMP-dependent protein kinase (protein kinase G), Ca2+/phospholipid-dependent protein kinase (protein kinase C), casein kinase I and II, myosin light chain kinase, and Ca2+/calmodulin-dependent protein kinase II were 0.48 +/- 0.13, 31.7 +/- 15.9, 38.3 +/- 6.0, 136.7 +/- 17.0, 28.3 +/- 17.5, and 29.7 +/- 8.1 microM, respectively. Kinetic analysis indicated that H-89 inhibits protein kinase A, in competitive fashion against ATP. To examine the role of protein kinase A in neurite outgrowth of PC12 cells, H-89 was applied along with nerve growth factor (NGF), forskolin, or dibutyryl cAMP. Pretreatment with H-89 led to a dose-dependent inhibition of the forskolin-induced protein phosphorylation, with no decrease in intracellular cyclic AMP levels in PC12D cells, and the NGF-induced protein phosphorylation was not not inhibited. H-89 also significantly inhibited the forskolin-induced neurite outgrowth from PC12D cells. This inhibition also occurred when H-89 was added before the addition of dibutyryl cAMP. Pretreatment of PC12D cells with H-89 (30 microM) inhibited significantly cAMP-dependent histone IIb phosphorylation activity in cell lysates but did not affect other protein phosphorylation activity such as cGMP-dependent histone IIb phosphorylation activity, Ca2+/phospholipid-dependent histone IIIs phosphorylation activity, Ca2+/calmodulin-dependent myosin light chain phosphorylation activity, and alpha-casein phosphorylation activity. However, this protein kinase A inhibitor did not inhibit the NGF-induced neurite outgrowth from PC12D cells. Thus, the forskolin- and dibutyryl cAMP-induced neurite outgrowth is apparently mediated by protein kinase A while the NGF-induced neurite outgrowth is mediated by a protein kinase A-independent pathway.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adrenal Gland Neoplasms
  • Animals
  • Axons / drug effects
  • Axons / physiology*
  • Bucladesine / pharmacology
  • Cell Line
  • Colforsin / pharmacology*
  • Isoquinolines / chemical synthesis
  • Isoquinolines / pharmacology*
  • Kinetics
  • Neoplasm Proteins / metabolism*
  • Nerve Growth Factors / pharmacology
  • Pheochromocytoma
  • Phosphorylation
  • Protein Kinase Inhibitors*
  • Sulfonamides*


  • Isoquinolines
  • Neoplasm Proteins
  • Nerve Growth Factors
  • Protein Kinase Inhibitors
  • Sulfonamides
  • Colforsin
  • Bucladesine
  • N-(2-(4-bromocinnamylamino)ethyl)-5-isoquinolinesulfonamide