Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2011 Jun;63(6):869-74.
doi: 10.1111/j.2042-7158.2011.01281.x. Epub 2011 May 3.

Possible mechanism of the antidepressant effect of 3,6'-disinapoyl sucrose from Polygala tenuifolia Willd

Affiliations

Possible mechanism of the antidepressant effect of 3,6'-disinapoyl sucrose from Polygala tenuifolia Willd

Yuan Hu et al. J Pharm Pharmacol. 2011 Jun.

Abstract

Objective: The present study was designed to observe the effects of 3,6'-disinapoyl sucrose (DISS), an active oligosaccharide ester component obtained from the roots of Polygala tenuifolia Willd., on behavioral and biochemical aspects of depression induced by chronic mild stress (CMS) in rats. It is the first exploration of the possible association between DISS's antidepressant-like effects and biochemical markers of depression, and involved measuring monoamine oxidase (MAO) activity, cortisol levels, superoxide dismutase (SOD) activity and malondialdehyde (MDA) levels.

Methods: Rats were exposed to stressor once daily for consecutive 5 weeks. DISS and a positive control drug, fluoxetine, were administered via gastric intubation to once daily for consecutive 3 weeks from the third week.

Key findings: The results showed that rats subjected to CMS exhibit a reduction in sucrose intake. Conversely, brain MAO-A and MAO-B activity, plasma cortisol levels, and MDA levels were increased, while SOD activity was decreased following CMS exposures. DISS significantly inhibited MAO-A and MAO-B activity and blocked plasma elevated cortisol level, an indicator of the hypothalamic-pituitary-adrenal (HPA) axis. In addition, DISS increases SOD activity, inhibits lipid peroxidation, and lessens production of MDA.

Conclusion: These results suggest that DISS may possess potent and rapid antidepressant properties, which are mediated via MAO, the HPA axis and oxidative systems. These antidepressant actions make DISS a potentially valuable drug for the treatment of depression.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms