P450 oxidoreductase (POR) is a two-flavin protein that reduces microsomal P450 enzymes and some other proteins. Preparation of active bacterially expressed human POR for biochemical studies has been difficult because membrane-bound proteins tend to interact with column matrices. To reduce column-protein interactions and permit more vigorous washing, human POR lacking 27 N-terminal residues (N-27 POR) was modified to carry a C-terminal Gly3His6-tag (N-27 POR-G3H6). When expressed in Escherichia coli, N-27 POR-G3H6 could be purified to apparent homogeneity by a modified, single-step nickel-nitrilotriacetic acid affinity chromatography, yielding 31 mg POR per liter of culture, whereas standard purification of native N-27 POR required multiple steps, yielding 5 mg POR per liter. Both POR proteins had absorption maxima at 375 and 453 nm and both reduced cytochrome c with indistinguishable specific activities. Using progesterone as substrate for bacterially expressed purified human P450c17, the Michaelis constant for 17α-hydroxylase activity supported by N-27 POR or N-27 POR-G3H6 were 1.73 or 1.49 μm, and the maximal velocity was 0.029 or 0.026 pmol steroids per picomole P450 per minute, respectively. Using 17-hydroxypregnenolone as the P450c17 substrate, the Michaelis constant for 17,20 lyase activity using N-27 POR or N-27 POR-G3H6 was 1.92 or 1.89 μm and the maximal velocity was 0.041 or 0.042 pmol steroid per picomole P450 per minute, respectively. Thus, N-27 POR-G3H6 is equally active as native N-27 POR. This expression and purification system permits the rapid preparation of large amounts of highly pure, biologically active POR and may be generally applicable for the preparation of membrane-bound proteins.