Facultative Methanotrophy: False Leads, True Results, and Suggestions for Future Research

FEMS Microbiol Lett. 2011 Oct;323(1):1-12. doi: 10.1111/j.1574-6968.2011.02315.x. Epub 2011 Jun 16.


Methanotrophs are a group of phylogenetically diverse microorganisms characterized by their ability to utilize methane as their sole source of carbon and energy. Early studies suggested that growth on methane could be stimulated with the addition of some small organic acids, but initial efforts to find facultative methanotrophs, i.e., methanotrophs able to utilize compounds with carbon-carbon bonds as sole growth substrates were inconclusive. Recently, however, facultative methanotrophs in the genera Methylocella, Methylocapsa, and Methylocystis have been reported that can grow on acetate, as well as on larger organic acids or ethanol for some species. All identified facultative methanotrophs group within the Alphaproteobacteria and utilize the serine cycle for carbon assimilation from formaldehyde. It is possible that facultative methanotrophs are able to convert acetate into intermediates of the serine cycle (e.g. malate and glyoxylate), because a variety of acetate assimilation pathways convert acetate into these compounds (e.g. the glyoxylate shunt of the tricarboxylic acid cycle, the ethylmalonyl-CoA pathway, the citramalate cycle, and the methylaspartate cycle). In this review, we summarize the history of facultative methanotrophy, describe scenarios for the basis of facultative methanotrophy, and pose several topics for future research in this area.

Publication types

  • Review

MeSH terms

  • Acetates / metabolism
  • Beijerinckiaceae / metabolism*
  • Carbon / metabolism*
  • Energy Metabolism*
  • Formaldehyde / metabolism
  • Metabolic Networks and Pathways
  • Methane / metabolism*
  • Methylocystaceae / metabolism*


  • Acetates
  • Formaldehyde
  • Carbon
  • Methane