Role of Sodium-Glucose Cotransporter 2 (SGLT 2) Inhibitors in the Treatment of Type 2 Diabetes

Endocr Rev. 2011 Aug;32(4):515-31. doi: 10.1210/er.2010-0029. Epub 2011 May 23.

Abstract

Hyperglycemia plays an important role in the pathogenesis of type 2 diabetes mellitus, i.e., glucotoxicity, and it also is the major risk factor for microvascular complications. Thus, effective glycemic control will not only reduce the incidence of microvascular complications but also correct some of the metabolic abnormalities that contribute to the progression of the disease. Achieving durable tight glycemic control is challenging because of progressive β-cell failure and is hampered by increased frequency of side effects, e.g., hypoglycemia and weight gain. Most recently, inhibitors of the renal sodium-glucose cotransporter have been developed to produce glucosuria and reduce the plasma glucose concentration. These oral antidiabetic agents have the potential to improve glycemic control while avoiding hypoglycemia, to correct the glucotoxicity, and to promote weight loss. In this review, we will summarize the available data concerning the mechanism of action, efficacy, and safety of this novel antidiabetic therapeutic approach.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Animals
  • Diabetes Mellitus, Type 2 / drug therapy*
  • Diabetes Mellitus, Type 2 / metabolism
  • Glucose / metabolism
  • Glycosuria, Renal / genetics
  • Humans
  • Hyperglycemia / metabolism
  • Hypoglycemic Agents / pharmacology*
  • Hypoglycemic Agents / therapeutic use
  • Kidney / drug effects
  • Kidney / metabolism
  • Sodium-Glucose Transporter 2 / genetics
  • Sodium-Glucose Transporter 2 / metabolism
  • Sodium-Glucose Transporter 2 Inhibitors*

Substances

  • Hypoglycemic Agents
  • SLC5A2 protein, human
  • Sodium-Glucose Transporter 2
  • Sodium-Glucose Transporter 2 Inhibitors
  • Glucose