Skip to main page content
Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2011 Feb 15;2(1):1-14.
doi: 10.4291/wjgp.v2.i1.1.

Therapeutic Potential of Curcumin in Gastrointestinal Diseases

Free PMC article

Therapeutic Potential of Curcumin in Gastrointestinal Diseases

Sigrid A Rajasekaran. World J Gastrointest Pathophysiol. .
Free PMC article


Curcumin, also known as diferuloylmethane, is derived from the plant Curcuma longa and is the active ingredient of the spice turmeric. The therapeutic activities of curcumin for a wide variety of diseases such as diabetes, allergies, arthritis and other chronic and inflammatory diseases have been known for a long time. More recently, curcumin's therapeutic potential for preventing and treating various cancers is being recognized. As curcumin's therapeutic promise is being explored more systematically in various diseases, it has become clear that, due to its increased bioavailability in the gastrointestinal tract, curcumin may be particularly suited to be developed to treat gastrointestinal diseases. This review summarizes some of the current literature of curcumin's anti-inflammatory, anti-oxidant and anti-cancer potential in inflammatory bowel diseases, hepatic fibrosis and gastrointestinal cancers.

Keywords: Apoptosis; Cancer; Curcumin; Gastrointestinal disease; Inflammation; Inflammatory bowel disease; Liver fibrosis.


Figure 1
Figure 1
Molecular targets of curcumin in gastrointestinal diseases. These include AID, activation-induced cytidine deaminase; Akt; AP-1: activated protein-1; α-SMA: alpha smooth muscle actin; caspase-3; ATM/Chk1; Ca2+/calmodulin; CD11b; C/EBPalpha: CCAAT/enhancer-binding protein alpha; COX-2: cyclooxygenase-2; CTGF: connective tissue growth factor; CXCR1: chemokine receptor 1; CXCR2: chemokine receptor 2; cyclin D1; cyclin E; CYP1A1: cytochrome P-450 A1; CYP1B1: cytochrome P-450 B1; EGFR: epidermal growth factor receptor; HIF-1: hypoxia-inducible factor-1; HO-1: heme oxygenase 1; HSP70: heat shock protein 70; IGF-1R: insulin-like growth factor 1 receptor; IGFBP-5: insulin-like growth factor binding protein-5; IL-1β/8/10: interleukin-1beta/8/10; iNOS: inducible nitric oxide synthase; JNK: C-jun N-terminal kinase; MAPK/ERK: mitogen-activated protein kinase/extracellular receptor kinase; MCP-1: monocyte chemoattractant protein 1; miR-21, -22, 200: microRNA-21, -22, -200; MMP-2/9: matrix metalloproteinase-2/9; mTOR: mammalian target of rapamycin; MyD88: myeloid differentiation primary response gene (88); NF-κB: nuclear factor-kappa B; Notch-1; p38 MAPK: p38 mitogen-activated protein kinase; PAK1: p21-activated kinase 1; PGE2: prostaglandin E2; P-gp: P-glycoprotein; PPARγ: peroxisome proliferator-activated receptor gamma; procollagen type I; ROS: reactive oxygen species; RTKN: rhotekin; Sp1, -3, -4; STAT3: signal transducers and activators of transcription 3; surviving/BIRC5; TGF-β1: transforming growth factor-beta1; TIMPs: tissue inhibitors of MMPs; TLR-4: toll-like receptor-4; TRPV-1: transient potential vanilloid receptor-1; uPA: urokinase-type plasminogen activator; VCAM-1: vascular cell adhesion molecule-1; WT-1: Wilms’ tumor gene 1.

Similar articles

See all similar articles

Cited by 15 articles

See all "Cited by" articles