A simple method for establishing whether complexes composed of small molecules detected by electrospray ionization mass spectrometry (ES-MS) originate from specific interactions in solution or nonspecific binding during the ES process is described. The technique, referred to as the nonspecific probe method, exploits the tendency of small molecules to bind nonspecifically to macromolecules during the ES process to establish the presence of specific noncovalent interactions. To implement the method, a macromolecule probe (P(NS)), which does not bind specifically to any of the components present in solution, is added prior to ES-MS analysis. The existence of specific small-molecule complexes is determined from an analysis of the measured distributions of the small molecules bound nonspecifically to P(NS). The principal assumption on which this methodology is based is that nonspecific binding of small molecules and their complexes to P(NS) during ES is a statistical (random) process. A mathematical framework for establishing the presence of specific heterocomplexes is presented. The reliability of the method for distinguishing specific from nonspecific small-molecule interactions is illustrated for peptide-antibiotic and metal ion-ligand interactions in water.