A-type lamins and Hutchinson-Gilford progeria syndrome: pathogenesis and therapy

Front Biosci (Schol Ed). 2011 Jun 1;3:1133-46. doi: 10.2741/216.


Lamin A and lamin C (A-type lamins, both encoded by the LMNA gene) are major components of the mammalian nuclear lamina, a complex proteinaceous structure that acts as a scaffold for protein complexes that regulate nuclear structure and function. Abnormal accumulation of farnesylated-progerin, a mutant form of prelamin A, plays a key role in the pathogenesis of the Hutchinson-Gilford progeria syndrome (HGPS), a devastating disorder that causes the death of affected children at an average age of 13.5 years, predominantly from premature atherosclerosis and myocardial infarction or stroke. Remarkably, progerin is also present in normal cells and appears to progressively accumulate during aging of non-HGPS cells. Therefore, understanding how this mutant form of lamin A provokes HGPS may shed significant insight into physiological aging. In this review, we discuss recent advances into the pathogenic mechanisms underlying HGPS, the main murine models of the disease, and the therapeutic strategies developed in cellular and animal models with the aim of reducing the accumulation of farnesylated-progerin, as well as their use in clinical trials of HGPS.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Animals
  • Contracture / metabolism*
  • Farnesyltranstransferase / antagonists & inhibitors
  • Genetic Therapy / methods*
  • Humans
  • Lamin Type A / biosynthesis
  • Lamin Type A / metabolism*
  • Mice
  • Models, Biological
  • Nuclear Lamina / metabolism*
  • Nuclear Proteins / metabolism*
  • Progeria / genetics*
  • Progeria / metabolism*
  • Progeria / therapy
  • Protein Precursors / metabolism*
  • Skin Abnormalities / metabolism*


  • Lamin Type A
  • Nuclear Proteins
  • Protein Precursors
  • prelamin A
  • Farnesyltranstransferase

Supplementary concepts

  • Tight skin contracture syndrome, lethal