Structure-activity relationships of monomeric and dimeric synthetic ACTH fragments in perifused frog adrenal slices

J Steroid Biochem. 1990 Apr;35(5):583-92. doi: 10.1016/0022-4731(90)90202-4.

Abstract

The effect of synthetic monomeric and dimeric ACTH fragments on spontaneous and ACTH(1-39)-evoked steroidogenesis in frog interrenal tissue was studied in vitro. Infusion of ACTH fragment 11-24 (10(-6) M) or its dimeric conjugates, attached either by their N-terminal, Glu(11-24)2, or their C-terminal amino acid, (11-24)2Lys, had no effect on the spontaneous release of corticosteroids. The monomer ACTH(11-24) and the dimer Glu(11-24)2 were also totally devoid of effect on the steroidogenic response to ACTH(1-39) (10(-9)M). In contrast, the (11-24)2Lys conjugate (10(-6)M) significantly decreased ACTH-induced stimulation of corticosterone and aldosterone (-63 and -62%, respectively). The dimeric conjugate of the fragment ACTH(7-24), linked through the C-terminal ends, (7-24)2Lys (10(-6)M), was also completely devoid of effect on basal steroidogenesis but caused a marked decrease of ACTH-evoked corticosterone and aldosterone release (-72 and -80%, respectively). Conversely, infusion of the dimer (1-24)2Lys gave rise to a dose-related stimulation of corticosterone and aldosterone release. The time-course of the steroidogenic response to the dimer was similar to that of ACTH(1-24). The 1-24 conjugate was 70 times less potent than the monomers ACTH(1-24) and ACTH(1-39). These results suggest that amphibian adrenocortical cells contain only one class of ACTH receptor which recognizes the 11-24 domain of ACTH with an affinity which depends on the presence of a strong potentiator segment, located at the N-terminus end of ACTH(1-39). Since the ACTH-dimers are thought to induce cross-linking of the receptors, our results suggest that aggregation of ACTH receptors causes a down-regulation of the receptors.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adrenal Glands / drug effects
  • Adrenal Glands / metabolism*
  • Adrenocorticotropic Hormone / pharmacology
  • Amino Acid Sequence
  • Animals
  • Cosyntropin / pharmacology
  • Humans
  • In Vitro Techniques
  • Male
  • Molecular Sequence Data
  • Perfusion
  • Rana ridibunda
  • Structure-Activity Relationship

Substances

  • Cosyntropin
  • Adrenocorticotropic Hormone