Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2011 May;9(5):e1000621.
doi: 10.1371/journal.pbio.1000621. Epub 2011 May 24.

Hydrogen peroxide promotes injury-induced peripheral sensory axon regeneration in the zebrafish skin

Affiliations

Hydrogen peroxide promotes injury-induced peripheral sensory axon regeneration in the zebrafish skin

Sandra Rieger et al. PLoS Biol. 2011 May.

Abstract

Functional recovery from cutaneous injury requires not only the healing and regeneration of skin cells but also reinnervation of the skin by somatosensory peripheral axon endings. To investigate how sensory axon regeneration and wound healing are coordinated, we amputated the caudal fins of zebrafish larvae and imaged somatosensory axon behavior. Fin amputation strongly promoted the regeneration of nearby sensory axons, an effect that could be mimicked by ablating a few keratinocytes anywhere in the body. Since injury produces the reactive oxygen species hydrogen peroxide (H(2)O(2)) near wounds, we tested whether H(2)O(2) influences cutaneous axon regeneration. Exposure of zebrafish larvae to sublethal levels of exogenous H(2)O(2) promoted growth of severed axons in the absence of keratinocyte injury, and inhibiting H(2)O(2) production blocked the axon growth-promoting effects of fin amputation and keratinocyte ablation. Thus, H(2)O(2) signaling helps coordinate wound healing with peripheral sensory axon reinnervation of the skin.

PubMed Disclaimer

Conflict of interest statement

The authors have declared that no competing interests exist.

Figures

Figure 1
Figure 1. Amputation promotes peripheral sensory axon regeneration in the fin epidermis of 78 hpf zebrafish larvae.
(A) A transient transgenic larva expressing GFP in two RB neurons: one innervating the trunk (red arrowhead) and one innervating the tail fin (white arrowhead). Arrow indicates the RB peripheral arbor in the tail fin. (B) Fin amputation in a 78 hpf islet2b:GFP transgenic larva caused severed axon branches to degenerate at the wound margin (brackets, 1 h post-amputation [hpamp]). RB axon arbors completely reinnervated the regenerated fin by 120 hpamp. (C, D) Time-lapse sequences from 78–90 hpf. The rightmost panel shows axon tip trajectories (red) over the course of the time-lapse (see also Video S1 for a tracing example). (C) The branches of a single GFP-labeled peripheral axon in an uninjured fin underwent minimal growth and retraction. Some of this apparent activity was due to movement of the tissue during time-lapse (see Video S1). (D) Fin amputation (dotted line) increased the growth of the severed arbor (see also Figure 3D, E) and promoted reinnervation of denervated territory (shaded area) (Video S3). (E) Quantification of axon activity in uninjured fins (n = 13) and after fin amputation (n = 26) (two-tailed, unpaired Student's t-test, *** p<0.001). Error bars represent the standard error of the mean. hpamp, hours post amputation.
Figure 2
Figure 2. Sensory axons innervate regenerated fins.
(A) Quantification of the density of axons within regenerated fins as measured by pixel density in a 50 µm2 area (white box) at the distal fin tip. No significant difference was found between groups (one-way ANOVA and Bonferroni's post-test for comparison of all groups was applied; p = ns>0.05). (B) Reinnervating sensory axons are functional. Uninjured larvae at 6 dpf were compared to amputated larvae at 3 dpa (6 dpf) in their ability to escape in response to touch stimuli at the caudal fin tip (11/12 uninjured fish escaped, 13/14 injured/regenerated fish escaped).
Figure 3
Figure 3. Signals from injured fins promoting axon regeneration function at short range.
(A–C) Time-lapse sequences from 78–90 hpf. The rightmost panel shows axon tip trajectories (red) over the course of the time-lapse. (A) Axotomy (arrow) without amputation (see also Video S2). Axotomy increased axon activity, but axons were unable to reinnervate denervated territory (shaded area) (Figure S2). (B) The ability of an axotomized arbor (arrow) to reinnervate denervated territory (shaded area) was improved by fin amputation (dotted line) (see also Figure S2 and Video S4). (C) Axotomized arbors distant from the amputation plane did not regenerate (see also Video S5). (D, E) Comparison of axon activity (growth and retraction) (D) and linear growth distance (E) in uninjured arbors, after axotomy alone, after amputation alone, or after axotomy and amputation, both in close proximity (adj) or at a distance of greater than 50 µm. (F) Comparison of growth and retraction between axotomized axons, and axotomized axons in larvae whose fins were also amputated. Amputation in addition to axotomy promoted a shift from balanced growth and retraction toward growth. Sample size for each group is indicated by the number in the bar. Error bars represent the standard error of the mean. For statistical analyses, we performed one-way ANOVA and either Dunnett's post-test to compare individual groups to uninjured controls (asterisks above bars indicate significance compared to control) or Bonferroni's post-test to compare individual groups with each other (as indicated by brackets, p = ns>0.05, * p<0.05, ** p<0.01, *** p<0.001). hpax, hours post axotomy; amp, amputation.
Figure 4
Figure 4. Keratinocyte damage promotes axon regeneration.
Time-lapse sequences from 78–90 hpf. The rightmost panel shows axon tip trajectories (red) over the course of the time-lapse. (A) Ablating muscle cells (circles) in the fin of a transgenic reporter larva was accompanied by only limited regeneration of an axotomized arbor (arrow). (B) Ablating ≥3 keratinocytes (red) (circles) in the fin promoted axon regeneration after axotomy (arrow) and improved reinnervation of denervated territory (shaded area). (C) Axotomy of a trigeminal axon branch in the head (arrow) induced limited growth of the severed axon, but the denervated territory was avoided (shaded area). (D) Ablation of ≥3 keratinocytes and axotomy of a trigeminal axon (arrow) promoted robust growth of the severed axon and reinnervation of the denervated territory (shaded area). (E) Quantification of axon activity after keratinocyte and muscle cell ablations. Sample size for each group is indicated by the number in the bar. Error bars represent the standard error of the mean. For statistical analyses, we performed one-way ANOVA and Dunnett's post-test to compare individual groups to control groups (ablation of 1 keratinocyte in the fin or the head) (asterisks above bars indicate significance compared to control) (p = ns>0.05, ** p<0.01, *** p<0.001). krtc, keratinocyte.
Figure 5
Figure 5. H2O2 detection following fin amputation at 78 hpf.
(A) In uninjured fins, H2O2 was always detectable with pentafluorobenzenesulfonyl fluorescein (see Methods) in a few cells near the notochord (arrowhead) but was not detectable in fin tissue. Fin amputation (arrows) produced high levels of H2O2 in wound marginal cells at 30 min post-amputation. In contrast, H2O2 levels were either undetectable or very low in duox1 morphants at 30 mpamp. (B, C) Ablating multiple keratinocytes produced hydrogen peroxide (H2O2). Time-lapse sequences from 78–90 hpf. The rightmost panel shows axon tip trajectories (red) over the course of the time-lapse and denervated territory (shaded areas). (B) Ablation of one or two keratinocytes (circles) did not produce sufficient H2O2 to be detected by the H2O2 sensor pentafluorobenzenesulfonyl fluorescein and did not promote axon regeneration of a nearby severed axon. (C) Ablating more (≥3) keratinocytes (circles) induced H2O2 production around the wound margin, as detected with the H2O2 sensor, and improved regeneration of a nearby axotomized arbor, which grew into denervated territory (shaded area, trajectories). mpamp, minutes post amputation.
Figure 6
Figure 6. H2O2 promotes peripheral sensory axon growth in the skin.
Time-lapse sequences from 78–90 hpf. The rightmost panel shows axon tip trajectories (red) over the course of the time-lapse; denervated territories are indicated by shaded areas. (A) Adding 3 mM H2O2 to the larval media for 12 h enhanced axon growth and promoted reinnervation of denervated territory after axotomy (arrow) in a non-amputated fin (see also Video S6). (B) Fin amputation did not promote axon growth in a duox1-morphant larva. The axon trajectories reflect mostly tissue movement during the time-lapse (see Video S7). (C) Adding 1.5 mM H2O2 rescued axon growth and improved reinnervation of denervated territory in amputated duox1-morphants (see also Video S8). (D, E) Quantification of axon activity (D) and linear axon growth (E) after axotomy in larvae treated with H2O2. (F) Quantification of axon activity after fin amputation. Sample size for each group is indicated by the number in the bar. Error bars represent the standard error of the mean. For statistical analyses, we performed one-way ANOVA and either Dunnett's post-test to compare individual groups to controls (asterisks above bar indicate significance compared to control, the first column in each graph) or Bonferroni's post-test to compare individual groups with each other (as indicated by brackets, p = ns>0.05, ** p<0.01). axo, axotomy; amp, amputation.
Figure 7
Figure 7. H2O2 produced by damaged keratinocytes is sufficient to promote axon regeneration.
(A) Diagram of the procedure for creating chimeric larvae to test where Duox1 functions to promote axon regeneration: cells from a duox1-MO injected sensory:GFP transgenic donor were transplanted into a wildtype Krt4:RFP transgenic host. GFP-labeled Rohon-Beard sensory neurons were thus deficient in Duox1 function, while RFP-labeled keratinocytes were wildtype. (B) Ablation of ≥3 wildtype keratinocytes (circle) and axotomy of a nearby duox1-morphant RB axon in the upper trunk region (arrow) promoted regeneration of severed axon branches (arrowheads) and reinnervation of denervated territory (shaded area) (see also Video S9). (C) Quantification of axon activity in chimeric embryos after keratinocyte ablation and axotomy, compared to basal growth (same as in Figure 1E), axotomy alone (same as in Figure 3D), and keratinocyte ablation (same as in Figure 4E). Sample size for each group is indicated by the numbers in the bars. Error bars represent the standard error of the mean. For statistical analyses, we performed one-way ANOVA and either Dunnett's post-test to compare individual groups to controls (asterisks above bars indicate significance compared to control, the first column in graph) or Bonferroni's post-test to compare individual groups with each other (as indicated by brackets, p = ns>0.05, * p<0.05, *** p<0.001).
Figure 8
Figure 8. Skin injury and H2O2 promote peripheral axon regeneration.
H2O2 is generated in response to keratinocyte injury and elicits two independent responses to injury: (1) the recruitment of macrophages to the wound margin , and (2) the promotion of peripheral sensory axon growth in the skin. H2O2's axon growth-promoting role requires neither leukocytes nor H2O2 production in neurons themselves. H2O2 may be promoting axon regeneration by eliciting a second signal (most likely from keratinocytes) that in turn acts on axons, remodeling the extracellular matrix to allow axon growth, or by directly acting on axons, perhaps by blocking their response to inhibitors.

Similar articles

Cited by

References

    1. Harsum S, Clarke J. D, Martin P. A reciprocal relationship between cutaneous nerves and repairing skin wounds in the developing chick embryo. Dev Biol. 2001;238:27–39. - PubMed
    1. Reynolds M, Alvares D, Middleton J, Fitzgerald M. Neonatally wounded skin induces NGF-independent sensory neurite outgrowth in vitro. Brain Res Dev Brain Res. 1997;102:275–283. - PubMed
    1. Barker A. R, Rosson G. D, Dellon A. L. Wound healing in denervated tissue. Ann Plast Surg. 2006;57:339–342. - PubMed
    1. Singer M. The influence of the nerve in regeneration of the amphibian extremity. Q Rev Biol. 1952;27:169–200. - PubMed
    1. Iovine M. K. Conserved mechanisms regulate outgrowth in zebrafish fins. Nat Chem Biol. 2007;3:613–618. - PubMed

Publication types

MeSH terms