New ABA-hypersensitive Arabidopsis mutants are affected in loci mediating responses to water deficit and Dickeya dadantii infection

PLoS One. 2011;6(5):e20243. doi: 10.1371/journal.pone.0020243. Epub 2011 May 25.


On water deficit, abscisic acid (ABA) induces stomata closure to reduce water loss by transpiration. To identify Arabidopsis thaliana mutants which transpire less on drought, infrared thermal imaging of leaf temperature has been used to screen for suppressors of an ABA-deficient mutant (aba3-1) cold-leaf phenotype. Three novel mutants, called hot ABA-deficiency suppressor (has), have been identified with hot-leaf phenotypes in the absence of the aba3 mutation. The defective genes imparted no apparent modification to ABA production on water deficit, were inherited recessively and enhanced ABA responses indicating that the proteins encoded are negative regulators of ABA signalling. All three mutants showed ABA-hypersensitive stomata closure and inhibition of root elongation with little modification of growth and development in non-stressed conditions. The has2 mutant also exhibited increased germination inhibition by ABA, while ABA-inducible gene expression was not modified on dehydration, indicating the mutated gene affects early ABA-signalling responses that do not modify transcript levels. In contrast, weak ABA-hypersensitivity relative to mutant developmental phenotypes suggests that HAS3 regulates drought responses by both ABA-dependent and independent pathways. has1 mutant phenotypes were only apparent on stress or ABA treatments, and included reduced water loss on rapid dehydration. The HAS1 locus thus has the required characteristics for a targeted approach to improving resistance to water deficit. In contrast to has2, has1 exhibited only minor changes in susceptibility to Dickeya dadantii despite similar ABA-hypersensitivity, indicating that crosstalk between ABA responses to this pathogen and drought stress can occur through more than one point in the signalling pathway.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Abscisic Acid / metabolism*
  • Abscisic Acid / pharmacology
  • Arabidopsis / genetics
  • Arabidopsis / metabolism*
  • Arabidopsis / microbiology*
  • Arabidopsis Proteins / genetics
  • Arabidopsis Proteins / metabolism
  • Enterobacteriaceae / physiology*
  • Gene Expression Regulation, Developmental / drug effects
  • Gene Expression Regulation, Plant / drug effects
  • Genes, Plant / genetics
  • Host-Pathogen Interactions
  • Mutation*
  • Plant Diseases / genetics
  • Plant Diseases / microbiology
  • Plant Leaves / genetics
  • Plant Leaves / growth & development
  • Plant Leaves / metabolism
  • Plant Roots / genetics
  • Plant Roots / growth & development
  • Plant Roots / metabolism
  • Reverse Transcriptase Polymerase Chain Reaction
  • Temperature
  • Water / metabolism*


  • Arabidopsis Proteins
  • Water
  • Abscisic Acid