Hair breakage index: an alternative tool for damage assessment of human hair

J Cosmet Sci. 2011 Mar-Apr;62(2):203-7.

Abstract

Improper hair care, mechanical abrasion, sun damage and chemical treatment changes the physical and morphological characteristics of hair. Several methods involving microscopic techniques, protein loss and assessment of tensile properties of the hair are generally used to evaluate the extent of damage caused. These are also used to determine the protective effect of hair care products. In the present investigation, the hair breakage index (HBI) was used as an alternative tool to determine the change in the properties of hair on weathering. HBI is a measure of the diameter of hair in a given cross sectional area of a marked region of hair on the scalp. The hair diameter changes as we progress towards the tip of the hair due to breakage. The ratio of the diameter of hair bundle in the distal region to the diameter of hair bundle in the proximal region from the scalp is used as an indicator of hair breakage. Higher HBI value is an indicator of hair damage.A study was conducted for duration of 16 weeks to assess the effect of weathering due to grooming practices on HBI values. The HBI and break stress for a group of 30 subjects were measured at baseline and at the end of 16 weeks (NU). Since Coconut oil (CNO) is known to have a positive benefit on tensile properties of hair, another matched group of 30 subjects who oiled their hair daily with CNO was used as a positive control (CNO). The HBI and break stress for this group were also measured at the baseline and after 16 weeks. It was observed that the HBI significantly increased in the NU group versus the CNO user group. The break stress also significantly decreased in the NU group suggesting its correlation with the HBI data. This study demonstrates the usefulness of HBI as a simple and effective tool for determining hair damage and its protection by different hair care products.

MeSH terms

  • Adult
  • Coconut Oil
  • Female
  • Hair / chemistry*
  • Humans
  • Plant Oils / chemistry*
  • Stress, Mechanical
  • Tensile Strength
  • Young Adult

Substances

  • Plant Oils
  • Coconut Oil