Novel inhibitors of AKT: assessment of a different approach targeting the pleckstrin homology domain

Curr Med Chem. 2011;18(18):2727-42. doi: 10.2174/092986711796011292.

Abstract

Protein kinase B/AKT plays a central role in cancer. The serine/threonine kinase is overexpressed or constitutively active in many cancers and has been validated as a therapeutic target for cancer treatment. However, targeting the kinase activity has revealed itself to be a challenge due to non-selectivity of the compounds towards other kinases. This review summarizes other approaches scientists have developed to inhibit the activity and function of AKT. They consist in targeting the pleckstrin homology (PH) domain of AKT. Indeed, upon the generation of 3-phosphorylated phosphatidylinositol phosphates (PI3Ps) by PI3-kinase (PI3K), AKT translocates from the cytosol to the plasma membrane and binds to the PI3Ps via its PH domain. Thus, several analogs of PI3Ps (PI Analogs or PIAs), alkylphospholipids (APLs), such as edelfosine or inositol phophates (IPs) have been described that inhibit the binding of the PH domain to PI3Ps. Recent allostertic inhibitors and small molecules that do not bind the kinase domain but affect the kinase activity of AKT, presumably by interacting with the PH domain, have been also identified. Finally, several drug screening studies spawned novel chemical scaffolds that bind the PH domain of AKT. Together, these approaches have been more or less sucessfull in vitro and to some extent translated in preclinical studies. Several of these new AKT PH domain inhibitors exhibit promising anti-tumor activity in mouse models and some of them show synergy with ionizing radiation and chemotherapy. Early clinical trials have started and results will attest to the validity and efficacy of such approaches in the near future.

Publication types

  • Research Support, N.I.H., Extramural
  • Review

MeSH terms

  • Animals
  • Antineoplastic Agents / pharmacology*
  • Antineoplastic Agents / therapeutic use
  • Blood Proteins / antagonists & inhibitors*
  • Blood Proteins / chemistry
  • Blood Proteins / metabolism
  • Drug Evaluation
  • Mice
  • Models, Animal
  • Phosphoproteins / antagonists & inhibitors*
  • Phosphoproteins / chemistry
  • Phosphoproteins / metabolism
  • Protein Kinase Inhibitors / pharmacology*
  • Protein Kinase Inhibitors / therapeutic use
  • Proto-Oncogene Proteins c-akt / antagonists & inhibitors*
  • Proto-Oncogene Proteins c-akt / chemistry
  • Proto-Oncogene Proteins c-akt / metabolism

Substances

  • Antineoplastic Agents
  • Blood Proteins
  • Phosphoproteins
  • Protein Kinase Inhibitors
  • platelet protein P47
  • Proto-Oncogene Proteins c-akt