Skip to main page content
Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
, 474 (7352), 484-6

X-ray Illumination of the Ejecta of Supernova 1987A


X-ray Illumination of the Ejecta of Supernova 1987A

J Larsson et al. Nature.


When a massive star explodes as a supernova, substantial amounts of radioactive elements--primarily (56)Ni, (57)Ni and (44)Ti--are produced. After the initial flash of light from shock heating, the fading light emitted by the supernova is due to the decay of these elements. However, after decades, the energy powering a supernova remnant comes from the shock interaction between the ejecta and the surrounding medium. The transition to this phase has hitherto not been observed: supernovae occur too infrequently in the Milky Way to provide a young example, and extragalactic supernovae are generally too faint and too small. Here we report observations that show this transition in the supernova SN 1987A in the Large Magellanic Cloud. From 1994 to 2001, the ejecta faded owing to radioactive decay of (44)Ti as predicted. Then the flux started to increase, more than doubling by the end of 2009. We show that this increase is the result of heat deposited by X-rays produced as the ejecta interacts with the surrounding material. In time, the X-rays will penetrate farther into the ejecta, enabling us to analyse the structure and chemistry of the vanished star.

Similar articles

  • Hard-X-ray emission lines from the decay of 44Ti in the remnant of supernova 1987A.
    Grebenev SA, Lutovinov AA, Tsygankov SS, Winkler C. Grebenev SA, et al. Nature. 2012 Oct 18;490(7420):373-5. doi: 10.1038/nature11473. Nature. 2012. PMID: 23075986
  • Herschel detects a massive dust reservoir in supernova 1987A.
    Matsuura M, Dwek E, Meixner M, Otsuka M, Babler B, Barlow MJ, Roman-Duval J, Engelbracht C, Sandstrom K, Lakićević M, van Loon JT, Sonneborn G, Clayton GC, Long KS, Lundqvist P, Nozawa T, Gordon KD, Hony S, Panuzzo P, Okumura K, Misselt KA, Montiel E, Sauvage M. Matsuura M, et al. Science. 2011 Sep 2;333(6047):1258-61. doi: 10.1126/science.1205983. Epub 2011 Jul 7. Science. 2011. PMID: 21737700
  • A massive hypergiant star as the progenitor of the supernova SN 2005gl.
    Gal-Yam A, Leonard DC. Gal-Yam A, et al. Nature. 2009 Apr 16;458(7240):865-7. doi: 10.1038/nature07934. Epub 2009 Mar 22. Nature. 2009. PMID: 19305392
  • An optical supernova associated with the X-ray flash XRF 060218.
    Pian E, Mazzali PA, Masetti N, Ferrero P, Klose S, Palazzi E, Ramirez-Ruiz E, Woosley SE, Kouveliotou C, Deng J, Filippenko AV, Foley RJ, Fynbo JP, Kann DA, Li W, Hjorth J, Nomoto K, Patat F, Sauer DN, Sollerman J, Vreeswijk PM, Guenther EW, Levan A, O'Brien P, Tanvir NR, Wijers RA, Dumas C, Hainaut O, Wong DS, Baade D, Wang L, Amati L, Cappellaro E, Castro-Tirado AJ, Ellison S, Frontera F, Fruchter AS, Greiner J, Kawabata K, Ledoux C, Maeda K, Møller P, Nicastro L, Rol E, Starling R. Pian E, et al. Nature. 2006 Aug 31;442(7106):1011-3. doi: 10.1038/nature05082. Nature. 2006. PMID: 16943831
  • Hydrogen-poor superluminous stellar explosions.
    Quimby RM, Kulkarni SR, Kasliwal MM, Gal-Yam A, Arcavi I, Sullivan M, Nugent P, Thomas R, Howell DA, Nakar E, Bildsten L, Theissen C, Law NM, Dekany R, Rahmer G, Hale D, Smith R, Ofek EO, Zolkower J, Velur V, Walters R, Henning J, Bui K, McKenna D, Poznanski D, Cenko SB, Levitan D. Quimby RM, et al. Nature. 2011 Jun 8;474(7352):487-9. doi: 10.1038/nature10095. Nature. 2011. PMID: 21654747
See all similar articles

Cited by 1 article


    1. Science. 2007 Feb 23;315(5815):1103-6 - PubMed
    1. Science. 2010 Sep 24;329(5999):1624-7 - PubMed

Publication types

LinkOut - more resources