Observations of cell size dynamics under osmotic stress

Cytometry A. 2011 Jul;79(7):560-9. doi: 10.1002/cyto.a.21076. Epub 2011 Jun 7.

Abstract

Cultured mammalian cells [e.g., murine hybridomas, Chinese hamster ovary (CHO) cells] used to produce therapeutic and diagnostic proteins often exhibit increased specific productivity under osmotic stress. This increase in specific productivity is accompanied by a number of physiological changes, including cell size variation. Investigating the cell size variation of hyperosmotically stressed cultures may reveal, in part, the basis for increased specific productivity as well as an understanding of some of the cellular defense responses that occur under hyperosmotic conditions. The regulation of cell volume is a critical function maintained in animal cells. Although these cells are highly permeable to water, they are significantly less permeable to ionic solutes. Appropriate cell-water content is actively maintained in these cells by regulation of ion and osmolyte balances. Transport appropriate to extracellular conditions, leading to accrual or release of these species, is activated in response to acute cell volume changes. Osmotically induced regulatory volume increases (RVI) and regulatory volume decreases (RVD) are known to occur under a variety of conditions. We observed the time evolution of size variation in populations of two CHO cell lines under hyperosmotic conditions. Observations were made using multiple instruments, multiple cell lines, and multiple cell culture conditions. Size variation of CHO A1 was gauged by flow cytometry using an LSRII® flow cytometer while CHO B0 cells were quantified using a Cedex® cell analyzer. Hyperosmotic stress had a dose-dependent effect on the regulatory control of cell volume. Stressed cultures of CHO cells grown in suspension exhibited a shift in mean cell diameter. This shift in mean was not due to a change in the whole population, but rather to the emergence of distinct subpopulations of cells with larger cell diameters than those in the bulk of the population.

MeSH terms

  • Animals
  • CHO Cells / cytology*
  • Cell Culture Techniques
  • Cell Proliferation
  • Cell Size*
  • Cricetinae
  • Cricetulus
  • Flow Cytometry / methods
  • Mice
  • Osmotic Pressure*