Gap junctions connect the cytosolic compartments of adjacent cells for direct electrotonic and metabolic cell-to-cell communication. Gap junctions between glial cells or neurons are ubiquitously expressed in the brain and play a role in brain development including cell differentiation, cell migration and survival, tissue homeostasis, as well as in human diseases including hearing loss, skin disease, neuropathies, epilepsy, brain trauma, and cardiovascular disease. Furthermore, gap junctions are involved in the synchronization and rhythmic oscillation of hippocampal and neocotical neuronal ensembles which might be important for memory formation and consolidation. In this review the accumulated evidence from mouse mutant and pharmacological studies using gap junction blockers is summarized and the progress made in dissecting the physiological, pathophysiological and behavioral roles of gap junction mediated intercellular communication in the brain is discussed.
Copyright © 2011 Elsevier Ltd. All rights reserved.