Update on resistance of Bacteroides fragilis group and related species with special attention to carbapenems 2006-2009

Anaerobe. 2011 Aug;17(4):147-51. doi: 10.1016/j.anaerobe.2011.05.014. Epub 2011 Jun 2.

Abstract

The susceptibility trends for the species of the Bacteroides fragilis group against various antibiotics were determined using data from 4 years [2006-2009] on 1957 isolates referred by 8 medical centers participating in a National Survey for the Susceptibility of B. fragilis. The antibiotic test panel included doripenem, ertapenem, imipenem, meropenem, ampicillin:sulbactam, piperacillin:tazobactam, cefoxitin, clindamycin, moxifloxacin, tigecycline, chloramphenicol and metronidazole. MICs were determined using agar dilution methods following CLSI recommendations. Genetic analysis of isolates from 2008 with elevated MICs (>2 μg/mL) to one or more of the carbapenems to detect presence of the cfiA gene was performed using PCR methodology. The results showed an increase in the resistance rates to the β-lactam antibiotics. High resistance rates were seen for clindamycin and moxifloxacin (as high as 60% for clindamycin and >80% for moxifloxacin), with relatively stable low resistance (5.4%) for tigecycline. For carbapenems, resistance in B. fragilis was 1.1%-2.5% in 2008-9. One isolate resistant to metronidazole (MIC 32 μg/mL) was observed as well as isolates with elevated MICs to chloramphenicol (16 μg/mL). Genetic analysis indicated that the cfiA gene was present in some but not all of the isolates with high MICs to the carbapenems. These data indicate that there continue to be changes in susceptibility over time, and that resistance can be seen among the carbapenems. High antibiotic resistance rates tend to be associated with specific species.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Anti-Bacterial Agents / pharmacology
  • Bacterial Proteins / genetics
  • Bacteroides fragilis / drug effects*
  • Bacteroides fragilis / genetics*
  • Bacteroides fragilis / isolation & purification
  • Carbapenems / pharmacology*
  • Drug Resistance, Microbial
  • Genes, Bacterial
  • Humans
  • Microbial Sensitivity Tests / methods
  • beta-Lactamases / genetics

Substances

  • Anti-Bacterial Agents
  • Bacterial Proteins
  • Carbapenems
  • beta-Lactamases
  • carbapenemase