Despite the importance of learning and circadian rhythms to feeding, there has been relatively little effort to integrate these separate lines of research. In this review, we focus on how light and food entrainable oscillators contribute to the anticipation of food. In particular, we examine the evidence for temporal conditioning of food entrainable oscillators throughout the body. The evidence suggests a shift away from previous notions of a single locus or neural network of food entrainable oscillators to a distributed system involving dynamic feedback among cells of the body and brain. Several recent advances, including documentation of peroxiredoxin metabolic circadian oscillation and anticipatory behavior in the absence of a central nervous system, support the possibility of conditioned signals from the periphery in determining anticipatory behavior. Individuals learn to detect changes in internal and external signals that occur as a consequence of the brain and body preparing for an impending meal. Cues temporally near and far from actual energy content can then be used to optimize responses to temporally predictable and unpredictable cues in the environment.
Copyright © 2011 Elsevier Inc. All rights reserved.