Implant strategies for endocervical and interstitial ultrasound hyperthermia adjunct to HDR brachytherapy for the treatment of cervical cancer

Phys Med Biol. 2011 Jul 7;56(13):3967-84. doi: 10.1088/0031-9155/56/13/014. Epub 2011 Jun 10.

Abstract

Catheter-based ultrasound devices provide a method to deliver 3D conformable heating integrated with HDR brachytherapy delivery. Theoretical characterization of heating patterns was performed to identify implant strategies for these devices which can best be used to apply hyperthermia to cervical cancer. A constrained optimization-based hyperthermia treatment planning platform was used for the analysis. The proportion of tissue ≥41 °C in a hyperthermia treatment volume was maximized with constraints T(max) ≤ 47 °C, T(rectum) ≤ 41.5 °C, and T(bladder) ≤ 42.5 °C. Hyperthermia treatment was modeled for generalized implant configurations and complex configurations from a database of patients (n = 14) treated with HDR brachytherapy. Various combinations of endocervical (360° or 2 × 180° output; 6 mm OD) and interstitial (180°, 270°, or 360° output; 2.4 mm OD) applicators within catheter locations from brachytherapy implants were modeled, with perfusion constant (1 or 3 kg m(-3) s(-1)) or varying with location or temperature. Device positioning, sectoring, active length and aiming were empirically optimized to maximize thermal coverage. Conformable heating of appreciable volumes (>200 cm(3)) is possible using multiple sectored interstitial and endocervical ultrasound devices. The endocervical device can heat >41 °C to 4.6 cm diameter compared to 3.6 cm for the interstitial. Sectored applicators afford tight control of heating that is robust to perfusion changes in most regularly spaced configurations. T(90) in example patient cases was 40.5-42.7 °C (1.9-39.6 EM(43 °C)) at 1 kg m(-3) s(-1) with 10/14 patients ≥41 °C. Guidelines are presented for positioning of implant catheters during the initial surgery, selection of ultrasound applicator configurations, and tailored power schemes for achieving T(90) ≥ 41 °C in clinically practical implant configurations. Catheter-based ultrasound devices, when adhering to the guidelines, show potential to generate conformal therapeutic heating ranging from a single endocervical device targeting small volumes local to the cervix (<2 cm radial) to a combination of a 2 × 180° endocervical and directional interstitial applicators in the lateral periphery to target much larger volumes (6 cm radial), while preferentially limiting heating of the bladder and rectum.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Brachytherapy / instrumentation*
  • Cervix Uteri*
  • Female
  • Humans
  • Hyperthermia, Induced / instrumentation*
  • Organs at Risk
  • Precision Medicine
  • Radiotherapy Planning, Computer-Assisted / methods*
  • Temperature
  • Ultrasonics / instrumentation*
  • Uterine Cervical Neoplasms / radiotherapy
  • Uterine Cervical Neoplasms / therapy*