Substrate- and kinase-directed regulation of phosphorylation of a cGMP-binding phosphodiesterase by cGMP

J Biol Chem. 1990 Sep 5;265(25):14971-8.


A purified bovine lung cGMP-binding cGMP-specific phosphodiesterase (cG-BPDE) was rapidly phosphorylated by purified bovine lung cGMP-dependent protein kinase (cGK). Within a physiological concentration range, cGK catalyzed phosphorylation of cG-BPDE at a rate approximately 10 times greater than did equimolar concentrations of purified catalytic subunit of cAMP-dependent protein kinase (cAK). cG-BPDE was a poor substrate for either purified protein kinase C or Ca2+/calmodulin-dependent protein kinase II. Binding of cGMP to the cG-BPDE binding site was required for phosphorylation since (a) phosphorylation of cG-BPDE by the catalytic subunit of cAK was cGMP-dependent, (b) phosphorylation of cG-BPDE in the presence of a cGMP analog specific for activation of cGK was cGMP-dependent, and (c) occupation of the cG-BPDE hydrolytic site with competitive inhibitors did not produce the cGMP-dependent effect. cGMP-dependent phosphorylation of cG-BPDE by both cGK and cAK occurred at serine. Proteolytic digestion of cG-BPDE phosphorylated by either cGK or cAK revealed the same phosphopeptide pattern, suggesting that phosphorylation by the two kinases occurred at the same or adjacent site(s). Tryptic digestion of cG-BPDE phosphorylated by cGK and [gamma-32P]ATP produced a single major phosphopeptide of approximately 2 kDa with the following amino-terminal sequence: Lys-Ile-Ser-Ala-Ser-Glu-Phe-Asp-Arg-Pro-Leu-Arg- Radioactivity was released during the third cycle of Edman degradation. cG-BPDE is one of few specific in vitro cGK substrates of known function to be identified. Elevation of intracellular cGMP may cause phosphorylation of cG-BPDE by modulating the substrate site availability as well as by activating cGK. Such regulation would greatly increase the selectivity of the phosphorylation of cG-BPDE and would represent a unique mechanism of action of a cyclic nucleotide or other second messenger.

Publication types

  • Comparative Study
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • 3',5'-Cyclic-GMP Phosphodiesterases / metabolism*
  • Amino Acid Sequence
  • Animals
  • Cattle
  • Cyclic GMP / metabolism*
  • Cyclic GMP / pharmacology
  • Kinetics
  • Lung / enzymology*
  • Macromolecular Substances
  • Molecular Sequence Data
  • Peptide Mapping
  • Phosphopeptides / isolation & purification
  • Phosphorylation
  • Protein Kinases / metabolism*
  • Sequence Homology, Nucleic Acid
  • Substrate Specificity


  • Macromolecular Substances
  • Phosphopeptides
  • Protein Kinases
  • 3',5'-Cyclic-GMP Phosphodiesterases
  • Cyclic GMP