Interstitial flow influences direction of tumor cell migration through competing mechanisms

Proc Natl Acad Sci U S A. 2011 Jul 5;108(27):11115-20. doi: 10.1073/pnas.1103581108. Epub 2011 Jun 20.


Interstitial flow is the convective transport of fluid through tissue extracellular matrix. This creeping fluid flow has been shown to affect the morphology and migration of cells such as fibroblasts, cancer cells, endothelial cells, and mesenchymal stem cells. A microfluidic cell culture system was designed to apply stable pressure gradients and fluid flow and allow direct visualization of transient responses of cells seeded in a 3D collagen type I scaffold. We used this system to examine the effects of interstitial flow on cancer cell morphology and migration and to extend previous studies showing that interstitial flow increases the metastatic potential of MDA-MB-435S melanoma cells [Shields J, et al. (2007) Cancer Cell 11:526-538]. Using a breast carcinoma line (MDA-MB-231) we also observed cell migration along streamlines in the presence of flow; however, we further demonstrated that the strength of the flow as well as the cell density determined directional bias of migration along the streamline. In particular, we found that cells either at high seeding density or with the CCR-7 receptor inhibited migration against, rather than with the flow. We provide further evidence that CCR7-dependent autologous chemotaxis is the mechanism that leads to migration with the flow, but also demonstrate a competing CCR7-independent mechanism that causes migration against the flow. Data from experiments investigating the effects of cell concentration, interstitial flow rate, receptor activity, and focal adhesion kinase phosphorylation support our hypothesis that the competing stimulus is integrin mediated. This mechanism may play an important role in development of metastatic disease.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Biomedical Engineering
  • Breast Neoplasms / pathology*
  • Breast Neoplasms / physiopathology*
  • Breast Neoplasms / secondary
  • Cell Count
  • Cell Line, Tumor
  • Cell Movement / physiology*
  • Chemotaxis / physiology
  • Extracellular Fluid / physiology
  • Female
  • Finite Element Analysis
  • Focal Adhesion Kinase 1 / physiology
  • Humans
  • Microfluidic Analytical Techniques
  • Models, Biological
  • Neoplasm Metastasis / pathology
  • Neoplasm Metastasis / physiopathology
  • Receptors, CCR7 / antagonists & inhibitors
  • Receptors, CCR7 / physiology
  • Signal Transduction


  • CCR7 protein, human
  • Receptors, CCR7
  • Focal Adhesion Kinase 1
  • PTK2 protein, human