Multisensing emissive pyrimidine

Chemphyschem. 2011 Aug 22;12(12):2260-5. doi: 10.1002/cphc.201100315. Epub 2011 Jun 22.

Abstract

Fluorescent nucleoside analogs, commonly used to explore nucleic acid dynamics, recognition and damage, frequently respond to a single environmental parameter. Herein we address the development of chromophores that can simultaneously probe more than one environmental factor while having each associated with a unique spectroscopic signature. We demonstrate that an isomorphic emissive pyridine-modified 2-deoxy-uridine 1, containing multiple sensory elements, responds to changes in acidity, viscosity, and polarity. Protonation of the pyridine moiety (pK(a) 4.4) leads to enhanced emission (λ(em) =388 nm) and red-shifted absorption spectra (λ(abs) =319 nm), suggesting the formation of an intramolecular hydrogen bond with the neighboring pyrimidine carbonyl. This "locked" conformation can also be mimicked by increasing solvent viscosity, resulting in a stark enhancement of emission quantum yield. Finally, increasing solvent polarity substantially impacts the chromophore's Stokes shift [from 5.8×10(3) cm(-1) at E(T) (30)=36.4 kcal mol(-1) to 9.3 ×10(3) cm(-1) at E(T) (30)=63.1 kcal mol(-1)]. The opposite effect is seen for the impact of solvent polarity of the protonated form. The characteristic photophysical signature induced by each parameter facilitates the exploration of these environmental factors both individually and simultaneously.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Absorption
  • Chemistry Techniques, Analytical*
  • DNA / chemistry
  • DNA / metabolism*
  • Deoxyuridine / chemistry
  • Deoxyuridine / metabolism*
  • Fluorescent Dyes / chemistry
  • Fluorescent Dyes / metabolism*
  • Hydrogen Bonding
  • Hydrogen-Ion Concentration
  • Models, Molecular
  • Protons
  • Pyridines / chemistry*
  • Spectrometry, Fluorescence
  • Viscosity

Substances

  • Fluorescent Dyes
  • Protons
  • Pyridines
  • DNA
  • pyridine
  • Deoxyuridine