The object of this study was to investigate the pharmacokinetics of darunavir-ritonavir and atazanavir-ritonavir once-daily dosing over 72 h (h) following drug intake cessation. Volunteers received darunavir-ritonavir at 800 and 100 mg, respectively, once daily for 10 days, followed by a 7-day washout period, and atazanavir-ritonavir at 300 and 100 mg, respectively, once daily for 10 days. Full pharmacokinetic profiles were assessed for each phase for the 72 h following day 10. Pharmacokinetic parameters were determined over 24 h and to the last measurable concentration by noncompartmental methods. Seventeen subjects completed the study. The geometric mean (GM) terminal elimination half-life to 72 h of darunavir was 6.48 h, which was lower than the 0- to 24-h half-life (10.70 h). The terminal elimination half-life of atazanavir was 6.74 h, which was lower than the 0- to 24-h half-life (13.72 h). All subjects but one had darunavir concentrations higher than the target of 550 ng/ml for protease-resistant HIV isolates (equivalent to 10 times the protein-binding-corrected 50% inhibitory concentration [IC(50)] for wild-type virus) at 24 h postdose, and 14 out of 17 had concentrations higher than the target at 30 h postdose (GM of 1,088 and 851 ng/ml). All subjects had atazanavir concentrations above the suggested minimum effective concentration of 150 ng/ml (equivalent to 10 times the protein-binding-corrected IC(50) for wild-type virus) at 24 and 30 h postdose (GM of 693 and 392 ng/ml). Two of 17 and 5 of 17 subjects were above target at 48 h postdose while on darunavir-ritonavir and atazanavir-ritonavir. Ritonavir half-life to 72 h was 6.84 h with darunavir and 6.07 with atazanavir. This study investigated the pharmacokinetic forgiveness of two boosted protease inhibitors. Although the rates of decline of darunavir and atazanavir slightly increased as ritonavir concentrations declined, most individuals had concentrations 6 h after the end of the ideal dosing interval of 24 h which were above the cutoff used to define therapeutic concentrations.