Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2011;52(2):185-95.
doi: 10.1093/ilar.52.2.185.

Nociceptive behavior and physiology of molluscs: animal welfare implications

Affiliations

Nociceptive behavior and physiology of molluscs: animal welfare implications

Robyn J Crook et al. ILAR J. 2011.

Abstract

Molluscs have proven to be invaluable models for basic neuroscience research, yielding fundamental insights into a range of biological processes involved in action potential generation, synaptic transmission, learning, memory, and, more recently, nociceptive biology. Evidence suggests that nociceptive processes in primary nociceptors are highly conserved across diverse taxa, making molluscs attractive models for biomedical studies of mechanisms that may contribute to pain in humans but also exposing them to procedures that might produce painlike sensations. We review the physiology of nociceptors and behavioral responses to noxious stimulation in several molluscan taxa, and discuss the possibility that nociception may result in painlike states in at least some molluscs that possess more complex nervous systems. Few studies have directly addressed possible emotionlike concomitants of nociceptive responses in molluscs. Because the definition of pain includes a subjective component that may be impossible to gauge in animals quite different from humans, firm conclusions about the possible existence of pain in molluscs may be unattainable. Evolutionary divergence and differences in lifestyle, physiology, and neuroanatomy suggest that painlike experiences in molluscs, if they exist, should differ from those in mammals. But reports indicate that some molluscs exhibit motivational states and cognitive capabilities that may be consistent with a capacity for states with functional parallels to pain. We therefore recommend that investigators attempt to minimize the potential for nociceptor activation and painlike sensations in experimental invertebrates by reducing the number of animals subjected to stressful manipulations and by administering appropriate anesthetic agents whenever practicable, welfare practices similar to those for vertebrate subjects.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources