Nonionic diethanolamide amphiphiles with unsaturated C18 hydrocarbon chains: thermotropic and lyotropic liquid crystalline phase behavior

Phys Chem Chem Phys. 2011 Aug 7;13(29):13370-81. doi: 10.1039/c1cp21808e. Epub 2011 Jun 27.

Abstract

The neat and lyotropic liquid crystalline phase behavior of three nonionic diethanolamide amphiphiles with C18 hydrocarbon chains containing one, two or three unsaturated bonds has been examined. This has allowed the effect of degree of unsaturation on the phase behavior of diethanolamide amphiphiles to be investigated. Neat linoleoyl and linolenoyl diethanolamide undergo a transition from a glassy liquid crystal to a liquid crystal at ∼-85 °C, while neat oleoyl diethanolamide undergoes a transition at ∼-60 °C to a liquid crystalline material before re-crystallizing at -34 °C. Oleoyl diethanolamide then undergoes a third transition from a crystalline phase to a smectic liquid crystalline phase at ∼5 °C. In the absence of water, the transition temperature from a smectic liquid crystal to an isotropic liquid decreases with increasing unsaturation. The addition of water results in the formation of a lamellar phase (L(α)) for all three amphiphiles. The lamellar phase is stable under excess water conditions up to temperatures of at least 70 °C. Approximate partial binary amphiphile-water phase diagrams generated for the three unsaturated C18 amphiphiles indicate that the excess water point for each amphiphile occurs at ∼60% (w/w) amphiphile.