Physiologically active substances by nanosizes are divided into 4 groups. The first group includes substances up to 100 nm: leukocytes, erythrocytes, cell components (nucleus, mitochondria), cancer cells, bacteria and bacteriophages. The second group consists of nanoparticles with size from 10 to 100 nm. These are antibody, ribosomes, glycogen granules, liposomes, and others. The third group of substances has sizes from 10 to 1 nm. This group includes: albumin, hemoglobin, membrane cells, fibrixogen, receptors (serotonin, beta-adrenergic receptor and others), insulin, fat soluble vitamins (ergocalciferol, retinol), folic acid, drugs (digoxin, quetcitin), chlorophyll plants, fullerenes. The fourth group consists of matter smaller than 1 nm, in particular: ATP, fructose, mediators (acetyl-choline, adrenaline, noradrenaline), phenylephrine, amino acids, water molecules, CO2, NO, oxygen atoms, hydrogen. The existence in the body of physiological processes based on natural nanotechnology may be proved by the following facts. 1. Physiologically active substances have nanosizes. 2. Cell membranes, the capillary wall have also nanosizes, promoting effective physiological processes involving biologically active substances with nanosizes. 3. Due to the small size of nanoparticles can penetrate through cell membranes and be distributed in the body. 4. From the position of modern nanoscience functioning organs, cells, subcellular structures, calcium channels, sodium-potassium pump is under the laws of natural nanomechanisms. 5. Summarising the literature data and own research, we can argue that the body's physiological processes based on natural nanomechanisms require more detailed, in-depth research. Nanophysiology studies peculiarities of the physiological processes in the body from the position of nanoscience and the impact of nanoparticles on the function of cells and organs. The author accepts the fact that not all ideas reported in this article have experimental confirmations, discussion is necessary for further comprehensive research, specialists of different directions to discover the role of nanomechanismes in physiological processes in the body.