Efficacy of intravenous amphotericin B-polybutylcyanoacrylate nanoparticles against cryptococcal meningitis in mice

Int J Nanomedicine. 2011;6:905-13. doi: 10.2147/IJN.S17503. Epub 2011 Apr 28.

Abstract

Amphotericin B deoxycholate (AmB), a classic antifungal drug, remains the initial treatment of choice for deep fungal infections, but it is not appropriate for treatment of cryptococcal meningitis due to its inability to pass through the blood-brain barrier (BBB). We examined the efficacy of amphotericin B-polybutylcyanoacrylate nanoparticles (AmB-PBCA-NPs) modified with polysorbate 80 that had a mean particle diameter less than 100 nanometers (69.0 ± 28.6 nm). AmB-PBCA-NPs were detected in the brain 30 minutes after systemic administration into BALB/c mice and had a higher concentration than systemically administered AmB liposome (AmB-L, P < 0.05); AmB was not detected in the brain. Following infection for 24 hours and then 7 days of treatment, the survival rate of mice in the AmB-PBCA-NP group (80%) was significantly higher than that of the AmB (0%) or AmB-L (60%) treatment groups. Fungal load was also lower when assessed by colony-forming unit counts obtained after plating infected brain tissue (P < 0.05). Our study indicates that AmB-PBCA-NPs with polysorbate 80 coating have the capacity to transport AmB across the BBB and is an efficient treatment against cryptococcal meningitis in a mouse model.

Keywords: brain targeting; cryptococcal meningitis; nanoparticles; polybutylcyanoacrylate (PBCA).

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Amphotericin B / administration & dosage*
  • Amphotericin B / chemistry
  • Amphotericin B / pharmacokinetics
  • Analysis of Variance
  • Animals
  • Antifungal Agents / administration & dosage*
  • Antifungal Agents / chemistry
  • Antifungal Agents / pharmacokinetics
  • Brain / metabolism
  • Brain / microbiology
  • Brain Chemistry
  • Cryptococcus neoformans / drug effects
  • Drug Delivery Systems / methods*
  • Enbucrilate / administration & dosage*
  • Enbucrilate / chemistry
  • Enbucrilate / pharmacokinetics
  • Injections, Intravenous
  • Meningitis, Cryptococcal / drug therapy*
  • Meningitis, Cryptococcal / metabolism
  • Mice
  • Mice, Inbred BALB C
  • Nanoparticles / administration & dosage*
  • Nanoparticles / chemistry
  • Nanoparticles / ultrastructure
  • Particle Size
  • Survival Analysis
  • Tissue Distribution

Substances

  • Antifungal Agents
  • Amphotericin B
  • Enbucrilate