Comparison of advanced iterative reconstruction methods for SPECT/CT

Z Med Phys. 2012 Feb;22(1):58-69. doi: 10.1016/j.zemedi.2011.04.007. Epub 2011 Jul 1.


Aim: Corrective image reconstruction methods which produce reconstructed images with improved spatial resolution and decreased noise level became recently commercially available. In this work, we tested the performance of three new software packages with reconstruction schemes recommended by the manufacturers using physical phantoms simulating realistic clinical settings.

Methods: A specially designed resolution phantom containing three (99m)Tc lines sources and the NEMA NU-2 image quality phantom were acquired on three different SPECT/CT systems (General Electrics Infinia, Philips BrightView and Siemens Symbia T6). Measurement of both phantoms was done with the trunk filled with a (99m)Tc-water solution. The projection data were reconstructed using the GE's Evolution for Bone(®), Philips Astonish(®) and Siemens Flash3D(®) software. The reconstruction parameters employed (number of iterations and subsets, the choice of post-filtering) followed theses recommendations of each vendor. These results were compared with reference reconstructions using the ordered subset expectation maximization (OSEM) reconstruction scheme.

Results: The best results (smallest value for resolution, highest percent contrast values) for all three packages were found for the scatter corrected data without applying any post-filtering. The advanced reconstruction methods improve the full width at half maximum (FWHM) of the line sources from 11.4 to 9.5mm (GE), from 9.1 to 6.4mm (Philips), and from 12.1 to 8.9 mm (Siemens) if no additional post filter was applied. The total image quality control index measured for a concentration ratio of 8:1 improves for GE from 147 to 189, from 179. to 325 for Philips and from 217 to 320 for Siemens using the reference method for comparison. The same trends can be observed for the 4:1 concentration ratio. The use of a post-filter reduces the background variability approximately by a factor of two, but deteriorates significantly the spatial resolution.

Conclusions: Using advanced reconstruction algorithms the largest improvement in image resolution and contrast is found for the scatter corrected slices without applying post-filtering. The user has to choose whether noise reduction by post-filtering or improved image resolution fits better a particular imaging procedure.

Publication types

  • Comparative Study

MeSH terms

  • Algorithms*
  • Artifacts
  • Humans
  • Image Interpretation, Computer-Assisted / instrumentation
  • Image Interpretation, Computer-Assisted / methods*
  • Image Processing, Computer-Assisted / instrumentation
  • Image Processing, Computer-Assisted / methods*
  • Imaging, Three-Dimensional / instrumentation
  • Imaging, Three-Dimensional / methods*
  • Multimodal Imaging / instrumentation
  • Multimodal Imaging / methods*
  • Neural Networks, Computer
  • Phantoms, Imaging
  • Positron-Emission Tomography*
  • Radiographic Image Enhancement / instrumentation
  • Radiographic Image Enhancement / methods*
  • Sensitivity and Specificity
  • Software*
  • Tomography, X-Ray Computed*