Skip to main page content
Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
, 476 (7359), 224-7

Direct Generation of Functional Dopaminergic Neurons From Mouse and Human Fibroblasts

Affiliations

Direct Generation of Functional Dopaminergic Neurons From Mouse and Human Fibroblasts

Massimiliano Caiazzo et al. Nature.

Abstract

Transplantation of dopaminergic neurons can potentially improve the clinical outcome of Parkinson's disease, a neurological disorder resulting from degeneration of mesencephalic dopaminergic neurons. In particular, transplantation of embryonic-stem-cell-derived dopaminergic neurons has been shown to be efficient in restoring motor symptoms in conditions of dopamine deficiency. However, the use of pluripotent-derived cells might lead to the development of tumours if not properly controlled. Here we identified a minimal set of three transcription factors--Mash1 (also known as Ascl1), Nurr1 (also known as Nr4a2) and Lmx1a--that are able to generate directly functional dopaminergic neurons from mouse and human fibroblasts without reverting to a progenitor cell stage. Induced dopaminergic (iDA) cells release dopamine and show spontaneous electrical activity organized in regular spikes consistent with the pacemaker activity featured by brain dopaminergic neurons. The three factors were able to elicit dopaminergic neuronal conversion in prenatal and adult fibroblasts from healthy donors and Parkinson's disease patients. Direct generation of iDA cells from somatic cells might have significant implications for understanding critical processes for neuronal development, in vitro disease modelling and cell replacement therapies.

Comment in

Similar articles

See all similar articles

Cited by 404 PubMed Central articles

See all "Cited by" articles

References

    1. Nat Rev Neurosci. 2007 Jan;8(1):21-32 - PubMed
    1. Proc Natl Acad Sci U S A. 2009 Sep 8;106(36):15454-9 - PubMed
    1. Nat Neurosci. 2002 Apr;5(4):308-15 - PubMed
    1. NeuroRx. 2004 Oct;1(4):382-93 - PubMed
    1. J Neurosci. 1998 Jun 1;18(11):4106-18 - PubMed

Publication types

MeSH terms

Substances

Associated data

Feedback