Intermolecular hydroamination of oxygen-substituted allenes. New routes for the synthesis of N,O-chelated zirconium and titanium amido complexes

Dalton Trans. 2011 Aug 14;40(30):7769-76. doi: 10.1039/c1dt10448a. Epub 2011 Jul 1.

Abstract

Intermolecular hydroamination of heteroatom-substituted allenes with a bulky arylamine was carried out using a bis(amidate) bis(amido) titanium(IV) complex (1) as a precatalyst. The reaction of 2,6-dimethylaniline with oxygen-substituted allene 2c or 2d in the presence of complex 1 gives the ketimine regioisomer as the exclusive product. Reduction of such ketimine products resulted in the formation of amino ethers that were further employed as proligands for the formation of N,O-chelating five-membered titana- and zirconacycles. Such sterically demanding N,O-chelating ligands result in the high-yielding preparation of mono-ligated products. Solid-state molecular structures of all the complexes revealed distorted trigonal bipyramidal geometry about the metal centers, with a dative bond between the metal and the oxygen donor atom. These new complexes obtained using hydroamination as the key-step in ligand preparation were also shown to be useful cyclohydroamination precatalysts in their own right.