Strong interactions between spinal cord networks for locomotion and scratching

J Neurophysiol. 2011 Oct;106(4):1766-81. doi: 10.1152/jn.00460.2011. Epub 2011 Jul 6.

Abstract

Distinct rhythmic behaviors involving a common set of motoneurons and muscles can be generated by separate central nervous system (CNS) networks, a single network, or partly overlapping networks in invertebrates. Less is known for vertebrates. Simultaneous activation of two networks can reveal overlap or interactions between them. The turtle spinal cord contains networks that generate locomotion and three forms of scratching (rostral, pocket, and caudal), having different knee-hip synergies. Here, we report that in immobilized spinal turtles, simultaneous delivery of types of stimulation, which individually evoked forward swimming and one form of scratching, could 1) increase the rhythm frequency; 2) evoke switches, hybrids, and intermediate motor patterns; 3) recruit a swim motor pattern even when the swim stimulation was reduced to subthreshold intensity; and 4) disrupt rhythm generation entirely. The strength of swim stimulation could influence the result. Thus even pocket scratching and caudal scratching, which do not share a knee-hip synergy with forward swimming, can interact with swim stimulation to alter both rhythm and pattern generation. Model simulations were used to explore the compatibility of our experimental results with hypothetical network architectures for rhythm generation. Models could reproduce experimental observations only if they included interactions between neurons involved in swim and scratch rhythm generation, with maximal consistency between simulations and experiments attained using a model architecture in which certain neurons participated actively in both swim and scratch rhythmogenesis. Collectively, these findings suggest that the spinal cord networks that generate locomotion and scratching have important shared components or strong interactions between them.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Decerebrate State / physiopathology
  • Electric Stimulation
  • Extremities / physiopathology
  • Female
  • Interneurons / physiology
  • Lumbar Vertebrae
  • Male
  • Models, Neurological
  • Nerve Net / physiopathology*
  • Periodicity
  • Physical Stimulation
  • Reflex / physiology
  • Spinal Cord / physiopathology*
  • Swimming / physiology*
  • Turtles