Mechanics and dynamics of the strain-induced M1-M2 structural phase transition in individual VO₂ nanowires

Nano Lett. 2011 Aug 10;11(8):3207-13. doi: 10.1021/nl201460v. Epub 2011 Jul 12.

Abstract

The elastic properties and structural phase transitions of individual VO(2) nanowires were studied using an in situ push-to-pull microelectromechanical device to realize quantitative tensile analysis in a transmission electron microscope and a synchrotron X-ray microdiffraction beamline. A plateau was detected in the stress-strain curve, signifying superelasticity of the nanowire arising from the M1-M2 structural phase transition. The transition was induced and controlled by uniaxial tension. The transition dynamics were characterized by a one-dimensionally aligned domain structure with pinning and depinning of the domain walls along the nanowire. From the stress-strain dependence the Young's moduli of the VO(2) M1 and M2 phases were estimated to be 128 ± 10 and 156 ± 10 GPa, respectively. Single pinning and depinning events of M1-M2 domain wall were observed in the superelastic regime, allowing for evaluation of the domain wall pinning potential energy. This study demonstrates a new way to investigate nanoscale mechanics and dynamics of structural phase transitions in general.