Streaming potential-based arthroscopic device is sensitive to cartilage changes immediately post-impact in an equine cartilage injury model

J Biomech Eng. 2011 Jun;133(6):061005. doi: 10.1115/1.4004230.

Abstract

Models of post-traumatic osteoarthritis where early degenerative changes can be monitored are valuable for assessing potential therapeutic strategies. Current methods for evaluating cartilage mechanical properties may not capture the low-grade cartilage changes expected at these earlier time points following injury. In this study, an explant model of cartilage injury was used to determine whether streaming potential measurements by manual indentation could detect cartilage changes immediately following mechanical impact and to compare their sensitivity to biomechanical tests. Impacts were delivered ex vivo, at one of three stress levels, to specific positions on isolated adult equine trochlea. Cartilage properties were assessed by streaming potential measurements, made pre- and post-impact using a commercially available arthroscopic device, and by stress relaxation tests in unconfined compression geometry of isolated cartilage disks, providing the streaming potential integral (SPI), fibril modulus (Ef), matrix modulus (Em), and permeability (k). Histological sections were stained with Safranin-O and adjacent unstained sections examined in polarized light microscopy. Impacts were low, 17.3 ± 2.7 MPa (n = 15), medium, 27.8 ± 8.5 MPa (n = 13), or high, 48.7 ± 12.1 MPa (n = 16), and delivered using a custom-built spring-loaded device with a rise time of approximately 1 ms. SPI was significantly reduced after medium (p = 0.006) and high (p<0.001) impacts. Ef, representing collagen network stiffness, was significantly reduced in high impact samples only (p < 0.001 lateral trochlea, p = 0.042 medial trochlea), where permeability also increased (p = 0.003 lateral trochlea, p = 0.007 medial trochlea). Significant (p < 0.05, n = 68) moderate to strong correlations between SPI and Ef (r = 0.857), Em (r = 0.493), log(k) (r = -0.484), and cartilage thickness (r = -0.804) were detected. Effect sizes were higher for SPI than Ef, Em, and k, indicating greater sensitivity of electromechanical measurements to impact injury compared to purely biomechanical parameters. Histological changes due to impact were limited to the presence of superficial zone damage which increased with impact stress. Non-destructive streaming potential measurements were more sensitive to impact-related articular cartilage changes than biomechanical assessment of isolated samples using stress relaxation tests in unconfined compression geometry. Correlations between electromechanical and biomechanical methods further support the relationship between non-destructive electromechanical measurements and intrinsic cartilage properties.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Arthroscopes / veterinary
  • Biomechanical Phenomena
  • Biomedical Engineering
  • Cartilage, Articular / injuries*
  • Cartilage, Articular / pathology
  • Cartilage, Articular / physiopathology
  • Disease Models, Animal
  • Electrophysiological Phenomena
  • Horse Diseases / pathology
  • Horse Diseases / physiopathology*
  • Horses
  • In Vitro Techniques
  • Stress, Mechanical