Synapses made by local interneurons dominate the intrinsic circuitry of the mammalian visual thalamus and influence all signals traveling from the eye to cortex. Here we draw on physiological and computational analyses of receptive fields in the cat's lateral geniculate nucleus to describe how inhibition helps to enhance selectivity for stimulus features in space and time and to improve the efficiency of the neural code. Further, we explore specialized synaptic attributes of relay cells and interneurons and discuss how these might be adapted to preserve the temporal precision of retinal spike trains and thereby maximize the rate of information transmitted downstream.
Copyright © 2011 Elsevier Ltd. All rights reserved.