The regenerative capacity of zebrafish reverses cardiac failure caused by genetic cardiomyocyte depletion
- PMID: 21752928
- PMCID: PMC3143562
- DOI: 10.1242/dev.068601
The regenerative capacity of zebrafish reverses cardiac failure caused by genetic cardiomyocyte depletion
Abstract
Natural models of heart regeneration in lower vertebrates such as zebrafish are based on invasive surgeries causing mechanical injuries that are limited in size. Here, we created a genetic cell ablation model in zebrafish that facilitates inducible destruction of a high percentage of cardiomyocytes. Cell-specific depletion of over 60% of the ventricular myocardium triggered signs of cardiac failure that were not observed after partial ventricular resection, including reduced animal exercise tolerance and sudden death in the setting of stressors. Massive myocardial loss activated robust cellular and molecular responses by endocardial, immune, epicardial and vascular cells. Destroyed cardiomyocytes fully regenerated within several days, restoring cardiac anatomy, physiology and performance. Regenerated muscle originated from spared cardiomyocytes that acquired ultrastructural and electrophysiological characteristics of de-differentiation and underwent vigorous proliferation. Our study indicates that genetic depletion of cardiomyocytes, even at levels so extreme as to elicit signs of cardiac failure, can be reversed by natural regenerative capacity in lower vertebrates such as zebrafish.
Figures
Similar articles
-
Notch signaling regulates cardiomyocyte proliferation during zebrafish heart regeneration.Proc Natl Acad Sci U S A. 2014 Jan 28;111(4):1403-8. doi: 10.1073/pnas.1311705111. Epub 2014 Jan 13. Proc Natl Acad Sci U S A. 2014. PMID: 24474765 Free PMC article.
-
Primary contribution to zebrafish heart regeneration by gata4(+) cardiomyocytes.Nature. 2010 Mar 25;464(7288):601-5. doi: 10.1038/nature08804. Nature. 2010. PMID: 20336144 Free PMC article.
-
In vivo cardiac reprogramming contributes to zebrafish heart regeneration.Nature. 2013 Jun 27;498(7455):497-501. doi: 10.1038/nature12322. Epub 2013 Jun 19. Nature. 2013. PMID: 23783515 Free PMC article.
-
Recent insights into zebrafish cardiac regeneration.Curr Opin Genet Dev. 2020 Oct;64:37-43. doi: 10.1016/j.gde.2020.05.020. Epub 2020 Jun 26. Curr Opin Genet Dev. 2020. PMID: 32599303 Review.
-
Cell migration during heart regeneration in zebrafish.Dev Dyn. 2016 Jul;245(7):774-87. doi: 10.1002/dvdy.24411. Epub 2016 May 10. Dev Dyn. 2016. PMID: 27085002 Free PMC article. Review.
Cited by
-
Single-cell chromatin profiling reveals genetic programs activating proregenerative states in nonmyocyte cells.Sci Adv. 2024 Feb 23;10(8):eadk4694. doi: 10.1126/sciadv.adk4694. Epub 2024 Feb 21. Sci Adv. 2024. PMID: 38381829 Free PMC article.
-
Harnessing the regenerative potential of interleukin11 to enhance heart repair.bioRxiv [Preprint]. 2024 Jan 30:2024.01.29.577788. doi: 10.1101/2024.01.29.577788. bioRxiv. 2024. PMID: 38352555 Free PMC article. Preprint.
-
Neutrophils facilitate the epicardial regenerative response after zebrafish heart injury.Dev Biol. 2024 Apr;508:93-106. doi: 10.1016/j.ydbio.2024.01.011. Epub 2024 Jan 28. Dev Biol. 2024. PMID: 38286185
-
Networks that Govern Cardiomyocyte Proliferation to Facilitate Repair of the Injured Mammalian Heart.Methodist Debakey Cardiovasc J. 2023 Nov 16;19(5):16-25. doi: 10.14797/mdcvj.1300. eCollection 2023. Methodist Debakey Cardiovasc J. 2023. PMID: 38028968 Free PMC article. Review.
-
An injury-responsive mmp14b enhancer is required for heart regeneration.Sci Adv. 2023 Dec;9(48):eadh5313. doi: 10.1126/sciadv.adh5313. Epub 2023 Nov 29. Sci Adv. 2023. PMID: 38019918 Free PMC article.
References
-
- Akazawa H., Komazaki S., Shimomura H., Terasaki F., Zou Y., Takano H., Nagai T., Komuro I. (2004). Diphtheria toxin-induced autophagic cardiomyocyte death plays a pathogenic role in mouse model of heart failure. J. Biol. Chem. 279, 41095-41103 - PubMed
-
- Beltrami A. P., Barlucchi L., Torella D., Baker M., Limana F., Chimenti S., Kasahara H., Rota M., Musso E., Urbanek K., et al. (2003). Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell 114, 763-776 - PubMed
-
- Beltrami C. A., Finato N., Rocco M., Feruglio G. A., Puricelli C., Cigola E., Quaini F., Sonnenblick E. H., Olivetti G., Anversa P. (1994). Structural basis of end-stage failure in ischemic cardiomyopathy in humans. Circulation 89, 151-163 - PubMed
-
- Bersell K., Arab S., Haring B., Kuhn B. (2009). Neuregulin1/ErbB4 signaling induces cardiomyocyte proliferation and repair of heart injury. Cell 138, 257-270 - PubMed
-
- Braunwald E., Bonow R. O. (2010). Braunwald's Heart Disease: A Textbook of Cardiovascular Medicine. Philadelphia: Saunders;
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Medical
Molecular Biology Databases
