Interaction of sperm with the zona pellucida during fertilization

Soc Reprod Fertil Suppl. 2010:67:267-87. doi: 10.7313/upo9781907284991.023.

Abstract

In order to achieve fertilization sperm cells, first need to successfully interact with the zona pellucida. To this end, the sperm surface is extensively remodeled during capacitation and the resulting sperm cells also possess hyperactivated motility. Together, this serves to mediate optimal recognition of the zona pellucida in the oviduct or after in vitro fertilization incubations (primary zona pellucida binding). When the sperm cell attaches to the zona pellucida, it will be triggered to undergo the acrosome reaction which allows the hyperactivated motile sperm cell to drill through the zona pellucida (secondary zona pellucida binding coinciding with sequential local zona pellucida digestion and rebinding). After successful zona penetration, some sperm cells may enter the perivitelline space. This delaying strategy of the oocyte allows only one sperm cell at a given time to bind and fuse with the oocyte (fertilization) and thus minimizes the risk of polyspermy. The fertilization fusion between the oocyte and the first sperm cell is immediately followed by a polyspermic fertilization block, in which the content of the oocyte's cortical granules is released into the perivitelline space. The cortical reaction blocks further sperm-oocyte fusion either by sticking at the oolemma or by the induction of a biochemical reaction of the zona pellucida (zona pellucida hardening). The cortical reaction thus blocks sperm-zona pellucida binding and/or sperm-zona pellucida penetration. This review summarizes the current understanding of sperm-zona pellucida interactions in relation to mammalian fertilization. The lack of knowledge about sperm-zona pellucida binding in ruminants will be critically discussed.

Publication types

  • Review

MeSH terms

  • Animals
  • Female
  • Male
  • Sperm-Ovum Interactions / physiology*
  • Spermatozoa / physiology*
  • Zona Pellucida / physiology*