Sensitivity analysis for causal inference using inverse probability weighting
- PMID: 21770046
- PMCID: PMC3777387
- DOI: 10.1002/bimj.201100042
Sensitivity analysis for causal inference using inverse probability weighting
Abstract
Evaluation of impact of potential uncontrolled confounding is an important component for causal inference based on observational studies. In this article, we introduce a general framework of sensitivity analysis that is based on inverse probability weighting. We propose a general methodology that allows both non-parametric and parametric analyses, which are driven by two parameters that govern the magnitude of the variation of the multiplicative errors of the propensity score and their correlations with the potential outcomes. We also introduce a specific parametric model that offers a mechanistic view on how the uncontrolled confounding may bias the inference through these parameters. Our method can be readily applied to both binary and continuous outcomes and depends on the covariates only through the propensity score that can be estimated by any parametric or non-parametric method. We illustrate our method with two medical data sets.
Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Conflict of interest statement
The authors have declared no conflict of interest.
Figures
Similar articles
-
Murmurs from the heart (or why the stethoscope is not an economic tool).Heart. 1998 Jan;79(1):10-1. doi: 10.1136/hrt.79.1.10. Heart. 1998. PMID: 9518073 Free PMC article. No abstract available.
-
Enthusiasm, reality, and cost-effectiveness analysis.Heart. 1998 Jan;79(1):9-10. doi: 10.1136/hrt.79.1.9. Heart. 1998. PMID: 9505910 Free PMC article. No abstract available.
-
Routine use of abciximab in coronary stenting?Lancet. 1998 Jul 11;352(9122):81-2. doi: 10.1016/s0140-6736(98)85003-4. Lancet. 1998. PMID: 9672267 No abstract available.
-
Abciximab therapy in percutaneous intervention: economic issues in the United States.Am Heart J. 1998 Apr;135(4):S90-7. doi: 10.1016/s0002-8703(98)70301-1. Am Heart J. 1998. PMID: 9539499 Review.
-
Abciximab therapy in percutaneous intervention: economic issues in the United States.Eur Heart J. 1998 Apr;19 Suppl D:D52-8. Eur Heart J. 1998. PMID: 9597522 Review.
Cited by
-
Sensitivity analysis for causality in observational studies for regulatory science.J Clin Transl Sci. 2023 Dec 5;7(1):e267. doi: 10.1017/cts.2023.688. eCollection 2023. J Clin Transl Sci. 2023. PMID: 38380390 Free PMC article.
-
BOUNDS ON THE CONDITIONAL AND AVERAGE TREATMENT EFFECT WITH UNOBSERVED CONFOUNDING FACTORS.Ann Stat. 2022 Oct;50(5):2587-2615. doi: 10.1214/22-aos2195. Epub 2022 Oct 27. Ann Stat. 2022. PMID: 38050638 Free PMC article.
-
Intravenous edaravone treatment in ALS and survival: An exploratory, retrospective, administrative claims analysis.EClinicalMedicine. 2022 Aug 4;52:101590. doi: 10.1016/j.eclinm.2022.101590. eCollection 2022 Oct. EClinicalMedicine. 2022. PMID: 35958519 Free PMC article.
-
Association of the use of hearing aids with the conversion from mild cognitive impairment to dementia and progression of dementia: A longitudinal retrospective study.Alzheimers Dement (N Y). 2021 Feb 14;7(1):e12122. doi: 10.1002/trc2.12122. eCollection 2021. Alzheimers Dement (N Y). 2021. PMID: 33614893 Free PMC article.
-
Rationale and Design of the SAFE-PAD Study.Circ Cardiovasc Qual Outcomes. 2021 Jan;14(1):e007040. doi: 10.1161/CIRCOUTCOMES.120.007040. Epub 2021 Jan 13. Circ Cardiovasc Qual Outcomes. 2021. PMID: 33435732 Free PMC article.
References
-
- Arah OA, Chiba Y, Greenland S. Bias formulas for external adjustment and sensitivity analysis of unmeasured confounders. Annals of Epidemiology. 2008;18:637–646. - PubMed
-
- Bang H, Robins JM. Doubly robust estimation in missing data and causal inference models. Biometrics. 2005;61:962–973. - PubMed
-
- Brumback BA, Hernan MA, Haneuse SJ, Robins JM. Sensitivity analyses for unmeasured confounding assuming a marginal structural model for repeated measures. Statistics in Medicine. 2004;23:749–767. - PubMed
-
- Cole SR, Hernan MA, Margolick JB, Cohen MH, Robins JM. Marginal structural models for estimating the effect of highly active antiretroviral therapy initiation on CD4 cell count. American Journal of Epidemiology. 2005;162:471–478. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Medical
